Mirror Surface Reconstruction under an Uncalibrated Camera

IEEE 2016 Conference on
Computer Vision and Patter ${ }^{1}$ The University of Hong Kong, Hong Kong. ${ }^{2}$ NICTA and CECS, ANU, Canberra.

Problem Definition \& Contribution
We address the problem of mirror surface reconstruction, and propose a solution based on observing the reflections of a moving reference plane on the mirror surface. Unlike previous approaches which require tedious work to calibrate the camera, our method can recover both the camera intrinsics and extrinsics together with the mirror surface from reflections of the reference plane under at least three unknown distinct poses.

The key contributions of this work are:
> To the best of our knowledge, the first mirror surface reconstruction solution under an unknown motion and an uncalibrated camera.
$>$ A closed-form (linear) solution for estimating the camera projection matrix from reflection correspondences.
$>$ A cross-ratio based nonlinear formulation that allows a robust estimation of the camera projection matrix together with the mirror surface.

Point-Line Correspondences

The relative poses of the reference plane
位 using reflection correspondences established Plücker line \mathcal{L} from the reflection correspondences of each observed point x in the image.
Hence, we can obtain a set of 3D space line orrespondences $\left\{\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right\}$ for a set of image points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$.

Line Projection Matrix

Point projection: $\mathbf{x}=\mathbf{P X}, \mathbf{P}$ is a 3×4 matrix

Line projection: $\mathbf{l}=\mathcal{P} \mathcal{L}, \mathcal{P}$ is a 3×6 matrix.
A valid line projection matrix must satisfy
$\mathcal{P}_{i} \cdot \overline{\mathcal{P}}_{j}=0 \forall i, j \in\{1,2,3\}$

$$
\begin{aligned}
& \text { Closed-form Solution } \\
& \begin{array}{ll}
\mathbf{x}^{\mathrm{T}} \mathcal{P} \overline{\mathcal{L}}=0 \quad \Leftrightarrow \quad \mathbf{A} \overrightarrow{\mathcal{P}}=\mathbf{0}, & \text { where } \overrightarrow{\mathcal{P}}=\left[\mathcal{P}_{1}^{\mathrm{T}} \mathcal{P}_{2}^{\mathrm{T}} \mathcal{P}_{3}^{\mathrm{T}}\right]^{\mathrm{T}} \text { and } \mathbf{A}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\mathrm{T}} \otimes \overline{\mathcal{L}}_{1}^{\mathrm{T}} \\
\vdots \\
\mathbf{x}_{n}^{\mathrm{T}} \otimes \overline{\mathcal{D}}_{n}^{\mathrm{T}}
\end{array}\right] \\
(\otimes \text { stand for Kronecker roduct }
\end{array}
\end{aligned}
$$

$\underset{\mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{\left(\mathbf{x}_{i}^{\mathrm{T}} \mathcal{P} \overline{\mathcal{L}}_{i}\right)^{2}}{a_{i}{ }^{2}+b_{i}{ }^{2}}$, where a_{i} and b_{i} are parameters for the 2D line $\mathcal{P} \overline{\mathcal{L}}_{i}$
Enforcing $\mathcal{P}_{i} \cdot \overline{\mathcal{P}}_{j}=0 \forall i, j \in\{1,2,3\}$
Given $\left(u_{0}, v_{0}\right), \mathbf{P}=\mathbf{K}[\mathbf{R} \mathbf{T}]=\left[\begin{array}{ccc}f_{x} & 0 & 0 \\ 0 & f_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3}\end{array}\right] \Leftrightarrow \mathcal{P}=\left[\begin{array}{ccc}f_{y} & 0 & 0 \\ 0 & f_{x} & 0 \\ 0 & 0 & f_{x} f_{y}\end{array}\right] \mathcal{P}^{\prime}$

$$
\mathbf{A} \overrightarrow{\mathcal{P}}=\mathbf{A D} \overrightarrow{\mathcal{P}}^{\prime}=\mathbf{A}^{\prime} \overrightarrow{\mathcal{P}}^{\prime}=0
$$

Experimental Results: Synthetic Data
where \mathbf{D} is a 18×18 diagonal matrix with $d_{i i}=f_{y}$ for $i=\{1, \ldots, 6\}, d_{i i}=f_{x}$ for $i=\{7, \ldots, 12\}$, and $d_{i i}=f_{x} f_{y}$ for $i=\{13, \ldots, 18\}$.

Cross-ratio Based Formulation

$$
\mathbf{M}=\mathbf{X}_{2}+s \frac{\overrightarrow{\mathbf{X}_{2} \mathbf{X}_{0}}}{\mid \overrightarrow{\mathbf{X}_{2} \mathbf{X}_{\mathbf{0}} \mid}}
$$

$\widehat{\mathbf{X}_{2} \mathbf{X}_{1}}\left|\left|\overline{\mathbf{X}_{2} \mathbf{X}_{0}}\right|\right| \overline{\mathbf{x}_{1} \mathbf{x}_{0}}\left|\mid \overline{\mathbf{x}_{2} \mathbf{m}}\right.$
$s=\frac{\overline{\mathbf{X}_{2} \mathbf{X}_{0}}| | \overline{\mathbf{x}_{1} \mathbf{X}_{0}}| | \overline{\mathbf{x}_{2} \mathbf{m}}\left|-\left|\overline{\mathbf{X}_{1} \mathbf{X}_{0}}\right|\right|\left|\overline{\mathbf{x}_{2} \mathbf{x}_{0}}\right|\left|\overline{\mathbf{x}_{1} \mathbf{m}}\right|}{}$
$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(\mathbf{m}_{i}-\mathbf{m}_{i}^{\prime}\right)^{2}$
where $\mathbf{m}_{i}^{\prime}=\mathbf{P}(\theta) \mathbf{M}_{i}, \theta=\left[f_{x}, f_{y}, u_{0}, v_{0}, r_{x}, r_{y}, r_{z}, t_{x}, t_{y}, t_{z}\right]$

Experimental Results: Real Data

