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Abstract

This paper addresses the problem of transparent object
matting. Existing image matting approaches for transpar-
ent objects often require tedious capturing procedures and
long processing time, which limit their practical use. In
this paper, we first formulate transparent object matting as
a refractive flow estimation problem. We then propose a
deep learning framework, called TOM-Net, for learning
the refractive flow. Our framework comprises two parts,
namely a multi-scale encoder-decoder network for produc-
ing a coarse prediction, and a residual network for refine-
ment. At test time, TOM-Net takes a single image as in-
put, and outputs a matte (consisting of an object mask,
an attenuation mask and a refractive flow field) in a fast
feed-forward pass. As no off-the-shelf dataset is available
for transparent object matting, we create a large-scale syn-
thetic dataset consisting of 178K images of transparent ob-
jects rendered in front of images sampled from the Microsoft
COCO dataset. We also collect a real dataset consisting
of 876 samples using 14 transparent objects and 60 back-
ground images. Promising experimental results have been
achieved on both synthetic and real data, which clearly
demonstrate the effectiveness of our approach.

1. Introduction
Image matting refers to the process of extracting the

foreground matte of an image by locating the region of the
foreground object and estimating the opacity of each pixel
inside the foreground region. The foreground object can
then be composited onto a new background image using the
matting equation [20]

C = F + (1− α)B, α ∈ [0, 1], (1)

where C denotes the composited color, F the foreground
color, B the background color, and α the opacity.

Image matting has been widely used in image editing and
film production. However, most of the existing methods are
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Figure 1. Given an image of a transparent object as input, our
model can estimate the environment matte (consisting of an object
mask, an attenuation mask and a refractive flow field) in a feed-
forward pass. The transparent object can then be composited onto
new background images with the extracted matte.

tailored for opaque objects, and cannot handle transparent
objects whose appearances depend on how light is refracted
from the background.

To model the effect of refraction, Zongker et al. [26] in-
troduced environment matting as

C = F + (1− α)B + Φ, α ∈ [0, 1], (2)

where Φ is the contribution of environment light caused by
refraction or reflection at the foreground object. Besides
estimating the foreground shape, environment matting also
describes how objects interact with the background.

Many efforts [3, 22, 15, 25, 7, 5] have been devoted to
improving the seminal work of [26]. The resulting meth-
ods often require either a huge number of input images to
achieve a higher accuracy, or specially designed patterns to
reduce the number of required images. They are in general
all very computational expensive.

In this paper, we focus on environment matting for trans-
parent objects. It is highly ill-posed, if not impossible,
to estimate an accurate environment matte for transparent
objects from a single image with an arbitrary background.
Given the huge solution space, there may exist multiple ob-
jects and backgrounds that can produce the same refractive
effect. In order to make the problem more tractable, we sim-
plify our problem to estimating an environment matte that

1



can produce visually realistic refractive effect from a sin-
gle image, instead of estimating a highly accurate refractive
flow. We define the environment matte in our model as a
triple consisting of an object mask, an attenuation mask and
a refractive flow field. Realistic refractive effect can then
be obtained by compositing the transparent object onto new
background images (see Fig. 1).

Inspired by the great successes of convolutional neural
networks (CNNs) in high-level computer vision tasks, we
propose a convolutional neural network, called TOM-Net,
for simultaneous learning of an object mask, an attenuation
mask and a refractive flow field from a single image with an
arbitrary background. The key contributions of this paper
can be summarized as follows:
• We introduce a simple and efficient model for trans-

parent object matting as simultaneous estimation of an
object mask, an attenuation mask and a refractive flow
field.
• We propose a convolutional neural network, TOM-

Net, to learn an environment matte of a transparent ob-
ject from a single image. To the best of our knowledge,
TOM-Net is the first CNN that is capable of learning
transparent object matting.
• We create a large-scale synthetic dataset and a real

dataset as a benchmark for learning transparent object
matting. Our TOM-Net has produced promising re-
sults on both the synthetic and real datasets.

2. Related Work
In this section, we briefly review representative works

on environment matting and recent works on CNN based
image mating.
Environment matting Zongker et al. [26] introduced the
concept of environment matting, and assumed each fore-
ground pixel being originated from a single rectangular re-
gion of the background. They obtained the environment
matte by identifying the corresponding background region
for each foreground pixel using three monitors and multi-
ple images. Chuang et al. [3] extended [26] in two ways.
First, they replaced the single rectangular supporting area
for a foreground pixel with multiple 2D oriented Gaussian
strips. This makes it possible for their method to model
the effects of color dispersion, multiple mapping and glossy
reflection. Second, they simplified the environment mat-
ting equation by assuming the object colorless and specu-
lar transparent. This allows them to achieve real time envi-
ronment matting (RTEM). The environment matte was then
extracted with one image taken in front of a pre-designed
pattern. However, RTEM requires background images to
segment the transparent objects, and depends on a time-
consuming off-line processing. Wexler et al. [22] intro-
duced a probabilistic model based method which assumes
each background point has a probability to make contribu-

tion towards the color of a certain foreground point. Their
approach does not require pre-designed patterns during data
acquisition, but it still needs multiple images and can only
model thin transparent objects. Peers and Dutré [15] used
a large number of wavelet basis backgrounds to obtain the
environment matte, and their method can also model the ef-
fect of diffuse reflection. Based on the fact that a signal can
be decomposed uniquely in the frequency domain, Zhu and
Yang [25] proposed a frequency-based approach to extract
an accurate environment matte. They used Fourier analy-
sis to solve the decomposition problem. Both [15] and [25]
require a large number of images to extract the matte (e.g.,
[15] needs 2,400 images and [25] needs 4,800 images for an
image of size 1024 × 1024), making them not very practi-
cal. Recently, compressive sensing theory has been applied
to environment matting to reduce the number of images re-
quired. Duan et al. [6] applied this theory in the spatial
domain and Qian et al. [16] applied it in the frequency do-
main. However, the number of images needed is still in the
order of hundreds. In contrast, our work can estimate an en-
vironment matte from a single image in a fast feed-forward
computation without the need for pre-designed patterns or
additional background images.

Yeung et al. [24] proposed an interactive way to esti-
mate an environment matte given an image containing a
transparent object. Their method requires users to manu-
ally mark the foreground and background in the image, and
models the refractive effect using a thin-plate-spline trans-
formation. Their method does not produce an accurate en-
vironment matte, but instead a visually pleasing refractive
effect. Our method shares the same spirit, but does not in-
volve any human interaction.
CNN based image matting Although the potential of
CNN on transparent object matting has not yet been ex-
plored, some existing works have adopted CNNs for solving
the general image matting problem. Shen et al. [18] intro-
duced a CNN for image matting of color portrait images.
Cho et al. [2] proposed a network to predict a better alpha
matte by taking the matting results of the traditional method
and normalized color image as input. Xu et al. [23] intro-
duced a deep learning framework that can estimate an alpha
matte from an image and its trimap. However, none of these
methods can be applied directly to the task of transparent
object matting as object opacity alone is not sufficient to
model the refractive effect.

3. Matting Formulation
As a transparent object may have multiple optical prop-

erties (e.g., color attenuation, translucency and reflection),
estimating an accurate environment matte for a generic
transparent object from a single image is very challenging.
Following the work of [3], we cast environment matting to
a refractive flow estimation problem by assuming that each
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Figure 2. TOM-Net architecture. The left subnetwork is the CoarseNet and the right subnetwork is the RefineNet. (Best viewed in color.)

foreground pixel only originates from one point in the back-
ground due to refraction. Compared to the seminal work of
[26], which models each foreground pixel as a linear com-
bination of a patch in the background, our formulation is
more tractable and can be easily encoded using a CNN.

In [26], the per-pixel environment matting is obtained
through leveraging color information from multiple back-
ground images. Given a set of pre-designed background
patterns, matting is formulated as

C = F + (1− α)B +

m∑
i=1

RiM(Ti,Ai), (3)

where F , B and α denote the foreground color, background
color and weight, respectively. The last term in (3) accounts
for the environment light accumulated fromm pre-designed
background images (m = 3 in [26]). Ri is a factor describ-
ing the contribution of light emanating from the i-th back-
ground image Ti.M(Ti,Ai) denotes the average color of
a rectangular region Ai on the background image Ti.

To obtain an environment matte, the transparent object
is placed in front of the monitor(s), and multiple pictures
of the object are captured with the monitor(s) displaying
different background patterns1. Generally, a surface point
receives light from multiple directions, especially for a dif-
fuse surface. When it comes to a (perfectly) transparent
object, however, a surface point will only receive light from
one direction as determined by the law of refraction. Con-
sider a single background image as the only light source,
the problem can be modeled as

C = F + (1− α)B +RM(T, P ), (4)

whereM(T, P ) is a bilinear sampling operation at location
P on the background image T. Further, by assuming a col-
orless transparent object, we have F = 0 and R becomes a

1For an image of size 512 × 512, 18 pictures and around 20 minutes
processing time are needed.

light attenuation index ρ (a scalar value). The formulation
in (4) can be simplified to

C = (1− α)B + ρM(T, P ), (5)

where ρ ∈ [0, 1] denotes the attenuation index.
Here, we use refractive flow to model the refractive effect

of a transparent object. The refractive flow of a foreground
pixel is defined as the offset between the foreground pixel
and its refraction correspondence on the background image.

We further introduce a binary foreground mask to define
the object region in the image. The matting equation can
now be rewritten as

C = (1−m)B +mρM(T, P ), (6)

where m ∈ {0, 1} denotes background (m = 0) or fore-
ground (m = 1). The matte can then be estimated by solv-
ing m, ρ and P for each pixel in the input image containing
the transparent object2.

4. Learning Transparent Object Matting
In this section, we present a two-stage deep learning

framework, called TOM-Net, for learning transparent ob-
ject matting (see Fig. 2). The first stage, denoted as
CoarseNet, is a multi-scale encoder-decoder network that
takes a single image as input, and predicts an object mask,
an attenuation mask and a refractive flow field simultane-
ously. CoarseNet is capable of predicting a robust object
mask. However, the estimated attenuation mask and refrac-
tive flow field lack local structural details. To overcome this
problem, we introduce the second stage of TOM-Net, de-
noted as RefineNet, to achieve a sharper attenuation mask
and a more detailed refractive flow field. RefineNet is a
residual network [10] that takes both the input image and
the output of CoarseNet as input. After training, our TOM-
Net can predict an environment matte from a single image
in a fast feed-forward pass.

2For each observed pixel, we have 7 unknowns (3 for B, 2 for P , 1 for
m and 1 for ρ).



4.1. Encoder-Decoder for Coarse Prediction

The first stage of our TOM-Net (i.e., CoarseNet) is based
on mirror-link CNN introduced in [19]. Mirror-link CNN
was proposed to learn non-lambertian object intrinsic de-
composition. Its output consists of an albedo map, a shading
map and a specular map. It shares a similar output structure
with our transparent object matting task (i.e., three output
branches sharing the same spatial dimensionality). There-
fore, it is reasonable for us to adapt mirror-link CNN for our
CoarseNet.

The mirror-link CNN adapted for our CoarseNet con-
sists of one shared encoder and three distinct decoders. The
encoder contains six down-sampling convolutional blocks,
leading to a down-sampling factor of 64 in the bottleneck
layer. Features in the encoder layers are connected to the
decoder layers having the same spatial dimensions through
skip connections [17]. Cross-links [19] are introduced to
make different decoders share the same input in each layer,
so that decoders can better utilize the correlation between
different predictions.

Learning with multi-scale loss has been proved to be
helpful in dense prediction tasks (e.g., [8, 9]). Since we
formulate the problem of transparent object matting as re-
fractive flow estimation, which is a dense prediction task,
we augment our mirror-link CNN with multi-scale loss sim-
ilar to [9]. We use four different scales in our model, where
the first scale starts from the decoder features with a down-
sampling factor of 8 and the largest scale has the same spa-
tial dimensions as the input.

In contrast to the recent two stage framework for image
matting [23], our TOM-Net has a shared encoder and three
parallel decoders to accommodate different outputs. Also,
we augment our CoarseNet with multi-scale loss and cross-
link. Moreover, TOM-Net is trained from scratch while the
encoder in [23] is initialized with the pre-trained VGG16.

4.2. Loss Function for Coarse Stage

CoarseNet takes a single image as input and predicts the
environment matte as a triple consisting of an object mask,
an attenuation mask and a refractive flow field. The learn-
ing of CoarseNet is supervised by the ground-truth matte
using an object mask segmentation loss Lms, attenuation
regression loss Lar, and refractive flow regression loss Lfr.
Besides, the predicted matte is expected to render an image
as close to the input image as possible when applied to the
ground-truth background. Hence, in addition to the super-
vision of the matte, we also take image reconstruction loss
Lir into account. Note that the ground-truth background is
only used to calculate the reconstruction error during train-
ing but not needed during testing. CoarseNet can therefore
be trained by minimizing

Lc = αc
msLms + αc

arLar + αc
frLfr + αc

irLir, (7)

where αc
ms, α

c
ar, α

c
fr, α

c
ir are weights for the corresponding

loss terms.
Object mask segmentation loss Object mask segmenta-
tion is simply a spatial binary classification problem. The
output of the object mask decoder has a dimension of
2×H×W , whereH andW denote the height and width of
the input. We normalize the output with softmax and com-
pute the loss using the binary cross-entropy function

Lms = − 1

HW

∑
ij

(M̃ij log(Pij)+(1−M̃ij) log(1−Pij)),

(8)
where M̃ij ∈ {0, 1} and Pij ∈ [0, 1] represent ground truth
and normalized foreground probability of the pixel at (i, j),
respectively.
Attenuation regression loss The predicted attenuation
mask has a dimension of 1 × H × W . The value of this
mask is in the range of [0, 1], where 0 indicates no light can
pass and 1 indicates the light will not be attenuated. We
adopt a mean square error (MSE) loss

Lar =
1

HW

∑
ij

(Aij − Ãij)
2, (9)

where Aij is the predicted attenuation index and Ãij the
ground truth at (i, j).
Refractive flow regression loss The predicted refractive
flow field has a dimension of 2 × H ×W , where we have
one channel for the horizontal displacement and another for
the vertical displacement. We normalize the refractive flow
with tanh activation and multiply it by the width of the
input, such that the output is constrained in the range of
[−W,W ]. We adopt an average end-point error (EPE) loss

Lfr =
1

HW

∑
ij

√
(F x

ij − F̃ x
ij)

2 + (F y
ij − F̃

y
ij)

2, (10)

where (F x, F y) and (F̃ x, F̃ y) denote the predicted flow
and the ground truth, respectively.
Image reconstruction loss We use MSE loss to measure
the dissimilarity between the reconstructed image and the
input image. Denoting the reconstructed image by I and
the ground-truth image (i.e., the input image) by Ĩ , the re-
construction loss is given by

Lir =
1

HW

∑
ij

‖Iij − Ĩij‖22. (11)

Implementation details In all experiments, we empiri-
cally set αc

ms = 0.1, αc
ar = 1, αc

fr = 0.01, and αc
ir =

1. The loss weights for different scales are 1
2(4−s) , where

s ∈ {1, 2, 3, 4} denotes the scale. CoarseNet contains 8M
parameters and it takes about 2.5 days to train with Adam
optimizer [12] on a single GPU. We first train the CoarseNet
from scratch until convergence and then train the RefineNet.



4.3. Residual Learning for Matte Refinement

As the attenuation mask and the refractive flow field pre-
dicted by the CoarseNet lack structural details, a refinement
stage is needed to produce a detailed matte. Observing that
residual learning is particularly suitable for tasks whose in-
put and output are largely similar [11, 14], we propose a
residual network, denoted as RefineNet, to refine the matte
predicted by the CoarseNet.

We concatenate the input image and the output of the
CoarseNet to form the input of the RefineNet. As the object
mask predicted by the CoarseNet is already plausible, the
RefineNet only outputs an attenuation mask and a refractive
flow field. The parameters of the CoarseNet are fixed when
training the refinement stage.
Loss for the refinement stage The overall loss for the
refinement stage is

Lr = αr
arLar + αr

frLfr, (12)

where Lar is the refinement attenuation regression loss,
Lfr the refinement flow regression loss, and αr

ar, αr
fr their

weights. The definitions of these two losses are identical
to those defined in the first stage. We found that adding the
image reconstruction loss in the refinement stage did reduce
the image reconstruction error during training, but was not
helpful in reserving sharp edges of the refractive flow field
(e.g., mouth of a glass), which is essential to maintain the
details of an object. Therefore, we remove the image recon-
struction loss here. The tanh activation for refractive flow
is also omitted in this stage to encourage the network to
focus on boundary regions that may have larger prediction
errors.
Implementation details We set αr

ar = 1, αr
fr = 1 for

the refinement. RefineNet contains 1M parameters and it
takes about 2 days to train with Adam optimizer. RefineNet
is randomly initialized during training.

5. Dataset for Learning and Evaluation
As no off-the-shelf dataset for transparent object mat-

ting is available, and it is very tedious and difficult to pro-
duce a large real dataset with ground-truth object masks,
attenuation masks and refractive flow fields, we created a
large-scale synthetic dataset by using POV-Ray [1] to ren-
der images of synthetic transparent objects. Besides, we
also collected a real dataset for evaluation. We will show
that our TOM-Net trained on the synthetic dataset can gen-
eralize well to real world objects, demonstrating its good
transferability.

5.1. Synthetic Dataset

We used a large number of background images and
3D models to render our training samples. We randomly

changed the pose of the models, as well as the viewpoint
and focal length of the camera in the rendering process to
avoid overfitting to a fixed setting.

Backgrounds Images We employed two types of back-
ground images, namely scene images and synthetic pat-
terns. For scene images, we randomly sampled images from
the Microsoft COCO [13] dataset3. The background images
for the training set are sampled from COCO Train2014 and
Test2015, while that for the validation set are from COCO
Val2014, giving rise to 100K scene images in total. For syn-
thetic patterns, we rendered 40K patterns of size 512× 512
using POV-Ray built-in textures.

Transparent Objects We divided common transparent
objects into four categories, namely glass, glass with wa-
ter, lens, and complex shape (see Fig. 4 for examples). We
constructed parametric 3D models for the first three cate-
gories, and generated a large number of models using ran-
dom parameters. For complex shapes, we constructed para-
metric 3D models for basic shapes like sweeping-spheres
and squashed surface of revolution (SOR) parts, and com-
posed a larger number of models using these basic shapes.
We generated 178K 3D models in total, with each model as-
signed a random refractive index λ ∈ [1.3, 1.5]. The distri-
bution of these models in four categories is shown in Tab. 1
(first two rows).

Table 1. Statistics of the introduced datasets.
Type Glass Glass & Water Lens Complex Total

Synthetic Train 52K 26K 20K 80K 178K
Synthetic Val 250 250 200 200 900

Real Test 470 103 61 242 876

Ground-truth Matte Generation We obtained the
ground-truth object mask of a model by rendering it in front
of a black background image and setting its color to white.
Similarly, we obtained the ground-truth attenuation mask
of a model by simply rendering it in front of a white back-
ground image. Finally, we obtained the ground-truth refrac-
tive flow field (see Fig. 4) of a model by rendering it in front
of a sequence of Gray-coded patterns.

Data Augmentation To improve the diversity of the train-
ing data and narrow the gap between real and synthetic data,
extensive data augmentation was carried out on-the-fly. For
an image with a size of 512× 512, we randomly performed
color (brightness, contrast and saturation) augmentation (in
a range of [-0.2, 0.2]), image scaling (in a range of [0.875,
1.05]), noise perturbation (in a range of [-0.05, 0.05]), and
horizontal/vertical flipping. Besides, we also blurred the
object boundary to make the synthetic data visually more
natural. A patch with a size of 448 × 448 was then ran-
domly cropped from an augmented image and used as input

3Other large-scale datasets like ImageNet [4] can also be used.



Table 2. Ablation study results. F, A, I, and M are short for flow,
attenuation, image reconstruction, and object mask, respectively.
(The first value for EPE is measured on the whole image and the
second measured within the object region. A-MSE and I-MSE are
computed on the whole image.)

ID Model Variants F-EPE A-MSE I-MSE M-IoU
0 Background 6.5 / 41.0 1.58 0.87 0.15
1 CoarseNet - (Lcfr) 3.9 / 26.5 0.24 0.23 0.98
2 CoarseNet - (Lcir) 2.3 / 15.7 0.25 0.22 0.98
3 CoarseNet - (multi-scale) 2.4 / 16.6 0.69 0.25 0.94
4 CoarseNet - (cross-link) 2.5 / 17.2 0.30 0.21 0.97
5 CoarseNet 2.2 / 15.4 0.28 0.18 0.97
6 CoarseNet + RefineNet 2.0 / 13.7 0.25 0.19 0.97

MSE (·10−2)
↓ better
↑ better

to train CoarseNet. To speed up the training and save mem-
ory, a smaller patch with a size of 384 × 384 was used to
train TOM-Net after the training of CoarseNet.

5.2. Real Dataset

To validate the transferability of TOM-Net, we introduce
a real dataset, which was collected using 14 objects4 and 60
background images, resulting in a dataset of 876 images.
The data distribution is summarized in Tab. 1 (last row).
During the data capturing process, the objects were placed
under different poses, with the distances between the cam-
era, object and background uncontrolled. Fig. 5 (second
column) shows some sample images from the real dataset.
Note that we do not have the ground-truth matte for the real
dataset. We instead captured images of the backgrounds
without the transparent objects to facilitate evaluation.

6. Experiments and Results
In this section, we present experimental results and anal-

ysis. Currently, it is non-trivial to have a fair compar-
ison with the previous methods, since none of the them
can compute the matte from a single image of a transpar-
ent object, and there exists no common datasets and mea-
surements for evaluation. We performed ablation study
for TOM-Net, and evaluated our approach on both syn-
thetic and real data. In addition, a user study was con-
ducted to validate the realism of TOM-Net composites. Our
code, model and datasets will be made available online:
https://guanyingc.github.io/TOM-Net.

6.1. Ablation Study for Network Structure

We quantitatively analyzed different components of
TOM-Net using synthetic dataset5. In particular, we veri-
fied the effectiveness of image reconstruction loss (Lc

ir), re-
fractive flow regression loss (Lc

fr), multi-scale loss, cross-
link, and RefineNet, where the first four components were
evaluated by removing each of them from CoarseNet. Each
variant was trained separately. RefineNet was evaluated by

4The objects consist of 7 glasses, 1 lens and 6 complex objects. Glasses
with water are implicitly included.

5Complex shape is excluded in experiments here to speed up training.

Input Coarse Flow Refined Flow Coarse Att. Refined Att.

Figure 3. Visualization of the effectiveness of the refinement stage
on real data. After refinement, the refractive flow and attenuation
mask have more clear structural details (e.g., glass mouth).

adding it to a trained CoarseNet and was trained while fix-
ing the parameters of CoarseNet. Besides, we included a
naive baseline, denoted as Background, by considering a
zero matte case (i.e., whole image as object mask, no atten-
uation, and no refractive flow) where the reconstructed im-
age is the same as the background image. We evaluated end-
point error (EPE) for refractive flow fields, intersection over
union (IoU) for object masks, mean square error (MSE) for
attenuation masks and image reconstruction results, respec-
tively. The results are summarized in Tab. 2. Background
was outperformed by all TOM-Net variants with a large
margin for all the evaluation metrics, which clearly shows
that TOM-Net can successfully learn the matte. Removing
each component from CoarseNet, the overall performance
decreased, although some metrics slightly increased due to
learning trade-offs, demonstrating these four components
are essential for TOM-Net. By introducing RefineNet, the
refractive flow performance was boosted, which verified the
effectiveness of RefineNet (see Fig. 3).

6.2. Results on Synthetic Data

Quantitative results for synthetic validation dataset are
presented in Tab. 3. We compared TOM-Net against Back-
ground and CoarseNet. Here, to accelerate training con-
vergence, we first trained CoarseNet from scratch using our
synthetic dataset excluding the complex shape subset. The
trained CoarseNet was then fine-tuned using the entire train-
ing set including complex shapes, followed by training of
RefineNet on the entire training set with random initializa-
tion. Similar to previous experiments, TOM-Net outper-
formed Background with a large margin, and slightly out-
performed CoarseNet in EPE and MSE, which implies more
local details can be learned by RefinedNet. The errors of
complex shape category are larger than that of others, be-
cause complex shapes contain more sharp regions that will
induce more errors. Although TOM-Net is not expected to
learn highly accurate refractive flow, the average EPE er-

https://guanyingc.github.io/TOM-Net


Table 3. Quantitative results on the synthetic validation set. (The first value for EPE is measured on the whole image and the second
measured within the object region. A-MSE and I-MSE are computed on the whole image.)

Glass Glass with Water Lens Complex Shape Average
F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU

Background 3.6 / 30.3 1.33 0.48 0.12 6.4 / 53.2 1.54 0.68 0.12 10.3 / 39.2 1.94 1.57 0.24 6.8 / 56.8 2.50 0.85 0.11 6.8 / 44.9 1.83 0.90 0.15
CoarseNet 2.1 / 15.8 0.22 0.14 0.97 3.1 / 23.5 0.31 0.23 0.97 2.0 / 6.7 0.17 0.28 0.99 4.5 / 34.4 0.38 0.33 0.92 2.9 / 20.1 0.27 0.24 0.96
TOM-Net 1.9 / 14.7 0.21 0.14 0.97 2.9 / 21.8 0.30 0.22 0.97 1.9 / 6.6 0.15 0.29 0.99 4.1 / 31.5 0.37 0.32 0.92 2.7 / 18.6 0.26 0.24 0.96

MSE (·10−2)
↓ better
↑ better

Background Input Rec. Image Rec. Error Refractive Flow (GT / Est.) Object Mask (GT / Est.) Attenuation Mask (GT / Est.)

(a) Glass, I-MSE = 0.21 × 10−2 F-EPE = 2.6 / 15.0 M-IoU = 0.99 A-MSE = 0.16 × 10−2

(b) Glass with Water, I-MSE = 0.15 × 10−2 F-EPE = 3.8 / 25.0 M-IoU = 0.97 A-MSE = 0.40 ×10−2

(c) Lens, I-MSE = 0.079 × 10−2 F-EPE = 1.5 / 3.7 M-IoU = 1.00 A-MSE = 0.17 × 10−2

(d) Complex Dog, I-MSE = 0.28 × 10−2 F-EPE = 5.05 / 40.6 M-IoU = 0.96 A-MSE = 0.16 × 10−2

Figure 4. Qualitative results on synthetic data. The first to the fourth columns show background, input image, reconstructed image, and
reconstruction error map, respectively. Quantitative results are shown below each example. Dark region in GT flow indicates no valid flow.
(Best viewed in PDF with zoom.)

Table 4. Quantitative results on real data.
Glass G & W Lens Cplx Avg

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Background 22.05 0.894 20.75 0.886 18.60 0.860 16.85 0.816 19.56 0.864
CoarseNet 25.09 0.921 23.53 0.911 21.13 0.895 17.89 0.835 21.91 0.891
TOM-Net 25.06 0.920 23.53 0.911 20.89 0.893 17.88 0.835 21.84 0.890

rors (2.7/18.6)6 are very small compared with the dimen-
sionality of the input image (448 × 448). In this sense,
our predicted flow is capable of producing visually plausi-
ble refractive effect (see Fig. 4). Although the background
images and objects in the validation set never appear in the
training set, TOM-Net can still predict robust matte. The
pleasing results of the complex shapes also demonstrate that
our model can generalize well from basic shapes to complex
shapes.

6.3. Results on Real Data

We evaluated TOM-Net on our collected real dataset,
which consists of 876 images of real objects. Due to the
absence of ground-truth matte, evaluation on the absolute

6The first value is measured on the whole image and the second mea-
sured within the object region.

Table 5. User study results.
Glass G & W Lens Cplx All

P C N P C N P C N P C N P C N
Photographs 522 275 31 163 97 16 74 48 16 91 35 12 850 455 75
Composites 531 266 31 145 113 18 73 52 13 78 51 9 827 482 71

error with ground truth is not possible. Instead, we eval-
uated PSNR and SSIM metrics [21] between each pair of
photograph and reconstructed image. The results are shown
in Tab. 4. The average PSNR and SSIM are above 21.0
and 0.89. The values are a bit lower for complex shapes,
due to the opaque base of complex objects as well as the
sharp regions of the objects that might induce large errors.
After training, TOM-Net generalized well to common real
transparent objects (see Fig. 5). It is worth to note that dur-
ing training, each sample contains only one object, while
TOM-Net can predict reliable matte for images containing
multiple objects, which indicates the transferability and ro-
bustness of TOM-Net.

User Study A user study was carried out to validate the
realism of TOM-Net composites. 69 subjects participated in
our user study. At the beginning, we showed each partici-
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Figure 5. Qualitative results on real data. The PSNR and SSIM between input photographs and reconstructed images are shown right after
the error maps. The last column shows the composites on novel backgrounds given the estimated matte. (Best viewed in PDF with zoom.)

pant photographs of the transparent objects that will be seen
during the user study. The objects consisted of 3 different
glasses, 1 glass with water, 1 lens, and 1 complex shape. 40
samples, including 20 photographs7 and the corresponding
20 TOM-Net composites, were then randomly presented to
each subject. When showing each sample, we also showed
the corresponding background image to the subject for ref-
erence. We provided 3 options for each sample: (P) pho-
tograph, (C) composite, (N) not distinguishable. Tab. 5
shows the statistics of the user study. The 69 participants
produced 1380 votes for the 20 real photographs, and 1380
votes for the 20 composites, respectively. The P:C:N ratios
are 850 : 455 : 75 and 827 : 482 : 71 for photographs and
composites respectively. The per-category ratio also fol-
lows a similar trend, indicating close chance of photographs
and composites to be considered real, which further demon-
strates TOM-Net can produce realistic matte.

7glass ×12, glass & water ×4, lens ×2, and complex shape ×2.

7. Conclusion and Discussion

We have introduced a simple and efficient model for
transparent object matting, and proposed a CNN architec-
ture, called TOM-Net, that takes a single image as input and
predicts environment matte as an object mask, an attenua-
tion mask, and a refractive flow field in a fast feed-forward
pass. Besides, we created a large-scale synthetic dataset and
a real dataset as a benchmark for learning transparent object
matting. Promising results have been achieved on both syn-
thetic and real data, which clearly demonstrated the feasibil-
ity and effectiveness of the proposed approach. Since our
model assumes objects to be colorless and specular trans-
parent, TOM-Net cannot be applied to colored transpar-
ent objects, translucent objects and transparent objects with
multiple mapping (i.e., refraction and reflection happen si-
multaneously at a surface point). We consider exploring
better models and architectures to handle these scenarios as
our future work.
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