

Problem Definition and Contribution

Goal: Establishing semantic correspondences between images depicting different instances of the same object or scene category. **Motivation:**

• Geometric consistency constraint is a key factor in semantic matching. • Previous approaches focus on either combining a spatial regularizer with handcrafted features, or learning a correspondence model for appearance only. **Key contributions:**

- A simple and efficient model for learning to match regions using both appearance and geometry.
- A convolutional neural network, SCNet, to learn semantic correspondence with region proposals.

• State-of-the-art results on several benchmarks, clearly demonstrating the advantage of learning both appearance and geometric terms.

Problem Formulation

Probabilistic Hough matching (PHM) [1, 2]: Region r = (f, l): feature f and location l Data D = (R, R'): two sets of regions R and R' Match m = (r, r'): a pair of regions in $R \times R'$ Offset of *m* as x = l - l': displacement between *r* and *r*'

In our learning framework, we consider similarity rather than probabilities:

$$\begin{aligned} z(m,w) &= f(m,w) \sum_{x} g(m,x) \sum_{m' \in D} f(m',w) g(m',x) \\ &= f(m,w) \sum_{m' \in D} \sum_{x} [\sum_{x} g(m,x) g(m',x)] f(m',w) \\ z(m,w) &= f(m,w) \sum_{m'} K_{mm'} f(m',w), \end{aligned}$$
where $K_{mm'} = \sum_{x} g(m,x) g(m',x)$

x runs over a grid of predefined offset values, and h(m) assigns match *m* to the nearest offset point.

$$K_{mm'} = \begin{cases} 1, & \text{if } h(m) = h(m') \\ 0, & \text{otherwise.} \end{cases}$$

We can learn our similarity function by minimizing w.r.t the network parameters *w*:

$$E(w) = \sum_{m=1}^{n} l[y_m, z(m, w)] + \lambda \Omega(w)$$

SCNet: Learning Semantic Correspondence ¹Kai Han, ^{4,5}Rafael S. Rezende, ²Bumsub Ham, ¹Kwan-Yee K. Wong, ³Minsu Cho, ⁴Cordelia Schmid, ^{4,5}Jean Ponce

²Yonsei Univ. IHKU

scoring. **SCNet-AG**

³POSTECH ⁴Inria ⁵ENS

r	cow	d.table	dog	horse	moto	person	plant	sheep	sofa	train	tv	mean
7	48.7	28.3	34.0	50.5	61.9	26.7	51.7	66.9	48.2	47.8	59.0	52.5
0	84.0	37.2	46.5	51.3	72.7	38.4	53.6	67.2	50.9	60.0	63.4	60.3
1	79.8	42.5	48.0	68.3	66.3	42.1	62.1	65.2	57.1	64.4	58.0	62.5
9	52.0	48.5	49.5	53.2	72.7	53.0	41.4	83.3	49.0	73.0	66.0	55.6
4	78.2	39.4	50.1	67.0	62.1	69.3	68.5	78.2	63.3	57.7	59.8	66.3
1	81.2	62.0	58.7	65.5	73.3	51.2	58.3	60.0	69.3	61.5	80.0	69.7
3	95.8	55.2	59.5	68.6	75.0	56.3	60.4	60.0	73.7	66.5	76.7	72.2

Table 4:	Results	on	PASCAL	Parts.

				Mathada	LAU	DCV
nods	LT-ACC	IoU	LOC-ERR	Ivieulous	100	
/a	0.70	0 11	0.30	NAM _{HOG}	0.35	0.13
A HOG	0.70	0.44	0.39	PHM _{HOG}	0.39	0.17
HOG	0.75	0.48	0.31	LOMHOG	0.41	0.17
$I_{\rm HOG}$	0.78	0.50	0.26	Congealing	0.38	0.11
oFlow	0.74	0.40	0.34	DACI	0.30	0.11
Flow	0.75	0.48	0.32	KASL	0.39	0.10
	0.77	0 47	0.35	CollectionFlow	0.38	0.12
S w/SE	0.80	0.50	0.35	DSP	0.39	0.17
	0.00	0.50	0.21	FCSS w/SF	0.44	0.28
S W/PF	0.83	0.52	0.22	FCSS w/PF	0.46	0.29
et-A	0.78	0.50	0.28	SCNet_A	0 47	0.17
et-AG	0.78	0.50	0.27		0.47	0.17
et-AG+	0.79	0.51	0.25	SCINET-AG	0.4/	0.17
				SCNet-AG+	0.48	0.18
			a ,			