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3D reconstruction has been a fundamental problem in computer vision and has

many applications. However, existing methods are mostly designed for diffuse surfaces

under multiple viewpoints. This thesis tackles three reconstruction problems under a

single view, namely, transparent object reconstruction, mirror surface reconstruction,

and diffuse surface reconstruction. Besides, semantic correspondence, which is essen-

tial for not only 3D reconstruction but also image understanding, is also investigated

in this thesis.

In the first part of this thesis, a novel and practical approach is presented for

transparent object reconstruction under a fixed viewpoint. A simple and handy setup

is introduced to alter the incident light paths before light rays enter the object, followed

by a surface recovery method based on reconstructing and triangulating such incident

light paths. Our approach does not need to explicitly model the complex interactions

of light as it travels through the object, assuming neither any parametric form for shape

of the object nor exact number of refractions and reflections occur when light travels

through the object. It can handle a transparent object with a complex structure, with

an unknown and even inhomogeneous refractive index.

This thesis then considers the problem of mirror surface reconstruction under a

fixed viewpoint. We first derive an analytical solution to recover the camera projection

matrix, and then optimize the camera projection matrix by minimizing reprojection



x

errors with a cross-ratio formulation. The mirror surface is finally reconstructed based

on the optimized cross-ratio constraint. The proposed method only needs reflection

correspondences as input and removes the restrictive assumptions of known motions,

Cn continuity of the surface, and calibrated camera(s) that are being used by other

existing methods. This greatly simplifies the challenging problem of mirror surface

recovery.

In the third part of this thesis, a novel self-calibration method is introduced for

single view diffuse surface reconstruction using an unknown mirror sphere. We first

derive an analytical solution to recover the focal length of the camera given its principal

point, and then introduce a robust algorithm to estimate accurate principal point and

the focal length of the camera. Besides, we also present a novel approach for estimating

both principal point and focal length of the camera when only a single image of the

sphere is available. With the estimated camera intrinsics, the sphere position and a

scaled 3D scene object can be obtained.

This thesis finally considers the problem of semantic correspondence estimation,

which is crucial for 3D reconstruction as well as scene understanding. Most previous

approaches to semantic correspondence focus on combining an effective spatial regu-

larizer with hand-crafted features, or learning a correspondence model for appearance

only. We proposed a convolutional neural network architecture, called SCNet, for

learning a geometrically plausible model for semantic correspondence. SCNet uses

region proposals as matching primitives, and explicitly incorporates geometric consis-

tency. (461 words)
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Chapter 1

Introduction

1.1 Motivation

3D reconstruction has always been a hot topic in the field of computer vision, and

has many important applications in robotics, augmented reality, video games, movie

production, reverse engineering, etc.

Many sophisticated methods have been developed over the past few decades, and

tremendous success has been achieved to reconstruct opaque objects with a diffuse

surface. For examples, structure-from-motion methods [1–3], shape-from-silhouette

methods [4, 5], shape-from-shading methods [6, 7], shape-from-shadows methods [8, 9],

photometric stereo methods [10, 11], etc.

Most of these methods, however, cannot handle mirror surfaces and transparent

objects due to the fact that the information they exploited is derived under the assump-

tion of a diffuse surface whose appearance is viewpoint independent (see Fig. 1.1(a)). A

mirror surface (or a transparent object) does not have a unique appearance of its own.

Its appearance depends on light reflected (refracted) from its surrounding environment

and is therefore viewpoint dependent (see Fig. 1.1(b,c)). In order to reconstruct mirror

surfaces and transparent objects, special algorithms have to be designed based on the

physical laws of reflection and refraction.

The difficulties in the study of mirror surfaces and transparent objects originate
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(a) (b) (c)

Fig. 1.1 Examples of diffuse, mirror and transparent surfaces. (a) A teapot with a
diffuse surface. (b) A teapot with a mirror surface. (c) A teapot with a transparent
surface.

from the complex interactions of light. A mirror surface alters an incident light path

by reflection at its surface. A transparent object, on the other hand, may alter an

incident light path by reflection, refraction, absorption and scattering at both its

exterior surface as well as its interior structure. Even with restrictive assumptions

and special hardware setups, state-of-the-art methods can only handle mirror surfaces

or transparent objects with a simple shape [12–15].

Meanwhile, it is not difficult for one to realize that there are as many (if not more)

mirror surfaces and transparent objects as purely diffuse objects in our world (e.g.,

polished metallic parts, chromed surfaces, mirrors, liquids, glass, plastics, crystals and

diamonds). Transparent objects reconstruction can also be used in detecting defects

in windshields in automobile industry and defects in glass-wall-panels in building in-

dustry, and in shape analysis of crystals and diamonds, etc. Mirror surface reconstruc-

tion can be useful in mirror surface inspection and calibration of non-central camera

systems, etc. Hence, the study of 3D model reconstruction cannot be considered

completed without taking mirror surfaces and transparent objects into accounts.

Mirror and transparent surfaces can also be used to facilitate the reconstruction of

diffuse surface. For example, mirrors can provide a wider field of view (see Fig. 1.2),

which benefits 3D reconstruction by bringing a larger range of the scene around into

images. By introducing one or more mirrors into the scene and observing the reflec-
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Fig. 1.2 A mirror reflecting the surrounding scene.

tion(s) on the mirror(s), multiple observations of the same scene point can be obtained

in a single viewpoint (e.g., [16]), which allows us to identify multiple light paths for

each scene point. Thus, we can capture multi-view information from a single view,

and this makes single view 3D reconstruction possible. Similarly, transparent objects

can also be used to construct multiple light paths for each scene point under a fixed

viewpoint (e.g., [17]).

The workhorse for 3D reconstruction is visual correspondence. High quality vi-

sual correspondences are also critical for image retrieval, image registration, and ob-

ject recognition. In general, visual correspondence estimation spans the range from

low-level feature matching (stereo) to high-level object or scene understanding (se-

mantic). Stereo correspondences are formed from pixels of the same object or scene

point in different images, while semantic correspondences are formed from pixels of the

same/different object(s) or scene point(s) in different images having the same seman-

tic meaning. Great successes have been achieved for stereo correspondence estimation

based on hand-crafted features such as SIFT [18], HOG [19], Gray Code [20], Phase

Shift [21], etc. Semantic correspondence estimation, however, still remains an open

and challenging problem, due to the complex appearance variation and shape deforma-
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tion of objects within the same category. It has a huge potential to benefit single view

reconstruction of transparent, mirror and diffuse surfaces, since the correspondence for

single view reconstruction can be considered as a special case of semantic correspon-

dence. The reflection and refraction correspondences are distorted, but they depict

exactly the same scene points, thus containing exactly the same semantic meaning.

1.2 Contributions

The main contributions of this thesis are:

• a fixed viewpoint approach to transparent object reconstruction based on

refraction of light. Our approach does not need to explicitly model the complex

interactions of light as it travels through the object, assuming neither any para-

metric form for shape of the object nor exact number of refractions and reflections

occur when light travels through the object. It can handle a transparent object

with a complex structure, with an unknown and even inhomogeneous refractive

index. Preliminary results of this research have been published in [22, 23].

• a fixed viewpoint mirror surface reconstruction solution under an unknown

motion of a reference plane and an uncalibrated camera. We propose (i) a

closed-form (linear) solution for estimating the camera projection matrix from

reflection correspondences; (ii) a cross-ratio based nonlinear formulation that

allows a robust estimation of the camera projection matrix together with the

mirror surface. Preliminary results of this research have been published in [24].

• a single view diffuse surface reconstruction method using an uncalibrated

camera and an unknown mirror sphere. We propose (i) an analytical solution

for recovering the focal length of a camera from an image of an unknown sphere

given the principal point of the camera; (ii) a robust method for estimating both

the principal point and focal length of a camera from multiple images of an

unknown sphere placed at different positions; (iii) a novel method for estimating
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both the principal point and focal length of a camera from just one single image

of an unknown sphere. Preliminary results of this research have been published

in [25].

• a convolutional neural network (CNN) for establishing semantic correspon-

dence. We introduce a simple and efficient approach for learning to match

regions using both appearance similarity and geometry consistency constraints.

Our model achieves state-of-the-art results on several benchmarks, which demon-

strate the advantage of taking geometry constraint into consideration. Prelimi-

nary results of this research have been published in [26].

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 This chapter addresses the problem of reconstructing the surface shape

of transparent objects. The difficulty of this problem originates from the viewpoint

dependent appearance of a transparent object, which quickly makes reconstruction

methods tailored for diffuse surfaces fail disgracefully. In this chapter, we develop a

fixed viewpoint approach to dense surface reconstruction of transparent objects based

on refraction of light. We introduce a simple setup that allows us to alter the incident

light paths before light rays enter the object, and develop a method for recovering

the object surface based on reconstructing and triangulating such incident light paths.

Our proposed approach does not need to model the complex interactions of light as it

travels through the object, neither does it assume any parametric form for the object

shape nor the exact number of refractions and reflections taken place along the light

paths. It can therefore handle transparent objects with a relatively complex shape and

structure, with unknown and even inhomogeneous refractive index. We also show that

for thin transparent objects, our proposed acquisition setup can be further simplified

by adopting a single refraction approximation. Experimental results on both synthetic
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and real data demonstrate the feasibility and accuracy of our proposed approach.

Chapter 3 This chapter addresses the problem of mirror surface reconstruction,

and a solution based on observing the reflections of a moving reference plane on the

mirror surface is proposed. Unlike previous approaches which require tedious work to

calibrate the camera, our method can recover both the camera intrinsics and extrinsics

together with the mirror surface from reflections of the reference plane under at least

three unknown distinct poses. Existing work has demonstrated that 3D poses of

the reference plane can be registered in a common coordinate system using reflection

correspondences established across images. This leads to a bunch of registered 3D

lines formed from the reflection correspondences. Given these lines, we first derive

an analytical solution to recover the camera projection matrix through estimating the

line projection matrix. We then optimize the camera projection matrix by minimizing

reprojection errors computed based on a cross-ratio formulation. The mirror surface

is finally reconstructed based on the optimized cross-ratio constraint. Experimental

results on both synthetic and real data are presented, which demonstrate the feasibility

and accuracy of our method.

Chapter 4 In this chapter, we develop a novel self-calibration method for single view

3D reconstruction using a mirror sphere. Unlike other mirror sphere based reconstruc-

tion methods, our method needs neither the intrinsic parameters of the camera, nor

the position and radius of the sphere be known. Based on eigen decomposition of the

matrix representing the conic image of the sphere and enforcing a repeated eignvalue

constraint, we derive an analytical solution for recovering the focal length of the cam-

era given its principal point. We then introduce a robust algorithm for estimating

both the principal point and the focal length of the camera by minimizing the differ-

ences between focal lengths estimated from multiple images of the sphere. We also

present a novel approach for estimating both the principal point and focal length of

the camera in the case of just one image of the sphere. With the estimated camera

intrinsic parameters, the position(s) of the sphere can be readily retrieved from the
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eigen decomposition(s) and a scaled 3D reconstruction follows. Experimental results

on both synthetic and real data are presented, which demonstrate the feasibility and

accuracy of our approach.

Chapter 5 This chapter addresses the problem of establishing semantic correspon-

dences between images depicting different instances of the same object or scene cate-

gory. Previous approaches focus on either combining a spatial regularizer with hand-

crafted features, or learning a correspondence model for appearance only. We propose

instead a convolutional neural network architecture, called SCNet, for learning a geo-

metrically plausible model for semantic correspondence. SCNet uses region proposals

as matching primitives, and explicitly incorporates geometric consistency in its loss

function. A comparative evaluation on several standard benchmarks demonstrates

that the proposed approach substantially outperforms both recent deep learning ar-

chitectures and previous methods based on hand-crafted features.

Chapter 6 This chapter summarizes the theories and algorithms developed in this

dissertation, followed by a brief discussion of potential future work.





Chapter 2

Single View Transparent Object

Reconstruction

2.1 Introduction

Reconstructing a 3D model of an object from its 2D images has always been a hot topic

in the field of computer vision. It has many important applications in robotics, aug-

mented reality, video games, movie production, reverse engineering, etc. Despite the

problem of 3D model reconstruction has virtually been solved for opaque objects with

a diffuse surface, the literature is relatively sparse when it comes to shape recovery

of transparent objects. It is still very challenging and remains an open problem. The

viewpoint dependent appearance of a transparent object quickly renders reconstruc-

tion methods tailored for diffuse surfaces useless, and most of the existing methods

for transparent object reconstruction are still highly theoretical. In fact, even with re-

strictive assumptions and special hardware setups, state-of-the-art methods can only

handle transparent objects with a very simple shape. Meanwhile, it is not difficult

to see that there exist many transparent objects in our world (e.g., glasses, plastics,

crystals and diamonds). Hence, the study of 3D model reconstruction cannot be con-

sidered completed without taking transparent objects into account.

As mentioned previously, the difficulty of reconstructing a transparent object origi-
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Camera

Reference plane

Tank

Transparent object

Fig. 2.1 Real reconstruction setup and examples of transparent objects.

nates from its viewpoint dependent appearance. A transparent object may alter a light

path by reflection, refraction, absorption and scattering at both its exterior surface

as well as its interior structure. A number of existing work attempted to reconstruct

a transparent object by exploiting specular highlights produced on the object surface

[13, 14]. This approach considers only reflection of light taken place at the object

surface, and greatly simplifies the problem by making it not necessary to consider

the complex interactions of light as it travels through the object. However, refraction

of light is indeed an important and unique characteristic of transparent objects. It

provides information on surface shape and should not be ignored. On the other hand,

methods based on reflection of light often work only under very restrictive assumptions

and precisely controlled environments, making them not very practical.

In this chapter, we focus our study in dense surface reconstruction of transpar-

ent objects. We introduce a fixed viewpoint approach to recovering the surface of a

transparent object based on refraction of light. Like those methods that are based on

specular highlights, our fixed viewpoint approach does not need to explicitly model

the complex interactions of light as it travels through the object. We present a simple

setup (see Fig. 2.1) that allows us to alter the incident light paths before light rays

enter the object by immersing the object partially in a liquid, and develop a method

for recovering the surface of a transparent object through reconstructing and trian-
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gulating these incident light paths. We also show that for thin transparent objects,

the acquisition setup can be further simplified by adopting a single refraction approx-

imation. Compared with existing methods, our proposed method has the following

benefits:

• It does not assume any parametric form for the shape of a transparent object.

• It can handle a transparent object with a complex structure, with an unknown

and inhomogeneous refractive index.

• It considers only the incident light paths before light rays enter a transparent ob-

ject, and makes no assumption on the exact number of refractions and reflections

taken place as light travels through the object.

• The proposed setup is simple and inexpensive.

The rest of the chapter is organized as follows. Section 2.2 briefly reviews existing

techniques in the literature for shape recovery of transparent objects. Section 2.3 de-

scribes our proposed approach to dense surface reconstruction of transparent objects

in detail. Section 2.4 introduces our simplified approach to thin transparent object

reconstruction. Section 2.5 discusses the problem of total internal reflection and ob-

jects that are suitable for our approach. Experimental results on both synthetic and

real data are presented in Section 2.6, followed by conclusions in Section 2.7.

2.2 Related Work

Great efforts have been devoted to the problem of transparent object reconstruction

in the past two decades. To formulate this problem, existing methods often make

assumptions such as orthographic projection [27–29], Cn continuity of the surface [29],

known exact number of refractions along each light path [30–32], etc. In [27, 28],

Murase reconstructed a rippling water surface from the average observed coordinates

of an underwater pattern under orthographic projection. Morris and Kutulakos [33]
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solved a similar problem with an unknown refractive index of the liquid using two

calibrated cameras and a known reference pattern. In [29], Shan et al. introduced

a framework for optimizing a refractive height field from a single image under the

assumptions of an orthographic camera, known background, single refractive material

and differentiable height field. In [34], Hata et al. used structured light and genetic

algorithm to estimate the shape of a transparent paste drop on a board. Ben-Ezra

and Nayar [35] assumed a parametric form for the shape of a transparent object and

estimated the shape parameters under the assumptions of a known camera motion and

a distant background. In [30, 31], Kutulakos and Steger categorized reconstructible

specular scenes, and developed algorithms for depth map computation in the cases

where refraction/reflection of light occurs exactly once and twice respectively. Follow-

ing the same fashion, Tsai et al. [32] demonstrated two depth-normal ambiguities for

transparent object recovery assuming the light path refracts exactly twice. In [36],

Zuo et al. developed an interactive specular and transparent object reconstruction

system based on visual hull refinement given the silhouettes under multiple views and

labeled contours of the object in sparse key frames. In [37], Qian et al. introduced

a method to recover transparent objects by solving an optimization function with a

position-normal consistency constraint, under the assumption of two refractions along

each light path. Their system consists of two cameras and one display serving as a

light source for correspondence estimation.

Many hardware setups have also been designed to recover the surfaces of transpar-

ent objects. In [38], Wetzstein et al. proposed a single image approach to reconstruct-

ing thin refractive surfaces using light field probes. In [39], Ding et al. introduced

a 3 × 3 camera array to acquire correspondences for fluid surface recovery. In [40],

Eren et al. determined the surface shape of a glass object using laser surface heating

and thermal imaging. In [41], Ihrke et al. dyed water with a fluorescent chemical

and presented a level set method for reconstructing a free flowing water surface from

multi-video input data by minimizing a photo-consistency error computed using ray-

tracing. Miyazaki and Ikeuchi [42] proposed an iterative method to estimate the front
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surface shape of a transparent object by minimizing the difference between observed

polarization data and polarization raytracing result under the assumptions of a known

refractive index, a known illumination distribution and a known back surface shape.

In [43], Trifonov et al. introduced a visible light tomographic reconstruction method

by immersing a transparent object into a fluid with a similar refractive index. The 3D

shape was recovered by building the light paths within the fluid and the object. In [44],

Hullin et al. embedded a transparent object into fluorescence and reconstructed the

object surface by detecting the intersections of the visible laser sheets with the visual

rays. A similar light sheet range scanning approach was introduced by Narasimhan et

al. in [45] for acquiring object geometry in the presence of a scattering medium. In

[46], O’Toole et al. developed the structured light transport (SLT) technique. Based

on SLT, they implemented an imaging device that allows one-shot indirect-invariant

imaging for reconstructing transparent and mirror surfaces using structured light. In

[47], Ma et al. reformulated the intensity transport equation in terms of light fields,

and presented a technique for refractive index field reconstruction using coded illu-

mination. In [48], Ji et al. estimated the refractive index field of a gas volume by

establishing ray-to-ray correspondences using a light field probe, and reconstructed

the light paths through the refractive index field using a variational method based on

Fermat’s Principle.

Like specular surfaces, transparent objects also exhibit reflection properties. Hence,

reflection correspondences designed for specular surface reconstruction (e.g., [15, 49])

can also be adopted for the reconstruction of transparent objects. In [50], Morris and

Kutulakos introduced scatter-trace of a pixel and recovered the exterior surface of a

transparent object using the non-negligible specular reflection component. Similarly,

Yeung et al. [51] exploited specular highlights and proposed a dual-layered graph-

cut method to reconstruct the surface of a solid transparent object. In [52], Chari

and Sturm introduced a method that integrates radiometric information into light

path triangulation for reconstruction of transparent objects from a single image. In

[53], Liu et al. proposed a frequency based method for establishing correspondences
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on transparent and mirror surfaces, and reconstruction can then be done using any

stereo methods.

Note that existing solutions for surface reconstruction of transparent objects often

work only under restrictive assumptions (e.g., known refractive index, single refractive

material, known exact number of refractions, non-negligible reflection of light, ortho-

graphic projection), using special hardware setups (e.g., light field probes, laser surface

heating with thermal imaging, dying liquids with fluorescent chemical, immersing ob-

jects into liquids with similar refractive indexes), or for a particular class of objects

(e.g., with known parametric model/average shape). There exists no general solution

to this challenging and open problem.

First entry point (FEP)

Path before contact (PBC)

Path after contact (PAC)

Camera

Transparent
object

θ0

θ1

Refraction
Reflection

Refraction

Liquid

FEP can be obtained by 
triangulation of PBCs.

FEP

PBCs

PACs

Camera

Reference plane

Reflection

Path without liquid
Path with liquid
Overlapped paths

Tank

(a) (b)

Fig. 2.2 (a) A light path through an object is partitioned into two parts, namely i)
the path before contact (PBC) which originates from the reference pattern to the first
entry point (FEP) on the object surface (i.e., the red paths) and ii) the path after
contact (PAC) that originates from FEP, passes through the interior of the object and
terminates at the optical center of the camera (i.e., the green paths). (b) The PBC
can be altered by filling the tank with a liquid, and the FEP can be recovered by
triangulating two PBCs.

In this chapter, we develop a fixed viewpoint approach to dense surface reconstruc-

tion of transparent objects based on altering and triangulating the incident light paths

before light rays enter the object. We present a simple setup that allows us to alter

the incident light paths by means of refraction of light. Under this proposed setup,
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the segment of a light path between the first entry point on the object surface and

the optical center of the camera remains fixed. This allows us to ignore the details

of the complex interactions of light inside the object. Compared with existing meth-

ods, our proposed approach (1) assumes neither a known nor homogeneous refractive

index of the object; (2) places no restriction on the exact number of refractions and

reflections taken place along a light path; and (3) assumes no parametric form for the

object shape. This allows our approach to handle transparent objects with a relatively

complex structure.

For thin transparent objects, we show that our acquisition setup can be further

simplified by adopting a single refraction approximation. Such an approximation has

been used by existing methods for recovering liquid surfaces (e.g., [33, 39]), one-side

flatten (e.g., [29]) or thin transparent surfaces (e.g., [38]). The altering of the incident

light paths can be achieved by the object itself without using any extra medium, and

the surface can be recovered using the same formulation as the general approach.

2.3 Shape Recovery of Transparent Objects

2.3.1 Notations and Problem Formulation

To solve the surface reconstruction problem, we consider a set of light paths originating

from a reference pattern placed behind a transparent object, passing through the object

and eventually reaching the image plane. We partition every such light path into two

parts, namely (i) the path before contact (PBC) which originates from the reference

pattern and ends at the first entry point (FEP) on the object surface (see the red paths

in Fig. 2.2(a)) and (ii) the path after contact (PAC) which originates from the FEP,

passes through the interior of the object and finally terminates at the optical center of

the camera (see the green paths in Fig. 2.2(a)). We can now reformulate the surface

reconstruction problem into estimating the FEP. The approach we take to tackle this

problem is by altering the PBC while fixing the PAC for each light path. This enables

us to ignore the details of the complex interactions of light inside the object, and
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recover the FEP by triangulating the PBCs. In the next section, we present a simple

setup that allows us to alter the PBCs by means of refraction of light.

2.3.2 Setup and Assumptions

In our proposed setup, a camera is used to capture images of a transparent object in

front of a reference pattern. The camera and the object are kept fixed with respect

to each other to ensure the PACs remain unchanged for all the image points. The

reference pattern is placed at two distinct positions and is used for reconstructing the

PBCs. As mentioned before, our approach is based on altering and triangulating the

PBCs. To achieve this, we employ a water tank and immerse the object partially

into a liquid so as to alter the PBCs by means of refraction of light (see Fig. 2.2(b)).

Two images of the transparent object are acquired for each position of the reference

pattern, one without liquid in the tank and one with liquid in the tank. By calibrating

the positions of the reference pattern and establishing correspondences between image

points and points on the reference pattern, we can reconstruct two PBCs for each

image point, one in air and one in the liquid, respectively. The FEP can then be

recovered by triangulating these two PBCs.

Note that our proposed approach does not require the prior knowledge of the

refractive index of the object or that of the liquid. If, however, the refractive index of

the liquid is known a priori, it is possible to also recover the surface normal at each

FEP. The only assumption made in our approach is that the PACs remain unchanged

when the object is immersed partially into the liquid.

2.3.3 Dense Refraction Correspondences

Before we can triangulate PBCs to recover the FEP, we first need to reconstruct the

PBCs from the images. To achieve this, we first calibrate the two distinct positions

of the reference pattern using [54]. It is then straightforward to reconstruct the PBC

for an image point by locating a correspondence point on the reference pattern under
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each of the two distinct positions in the same medium (i.e., with/without liquid in

the tank). It is obvious that the quality of the correspondences will have a direct

effect on the quality of the reconstruction. There exist many methods for establish-

ing correspondences [55], such as Gray Code [20], Phase Shift [21], etc. However,

these methods often can only provide sparse correspondences with limited precisions

(e.g., a small patch of pixels is mapped to a small region on a reference plane due

to finite discretization). In this work, we would like to establish quasi-point-to-point

correspondences between the image and the reference pattern. We employ a portable

display screen (e.g., an iPad) to serve as the reference pattern, and show a sequence

of a thin stripe sweeping across the screen in vertical direction and then in horizontal

direction [30, 31]. We capture an image for each of the positions of the sweeping stripe

(see Fig. 2.3). For each image point, its correspondence on the reference pattern can

then be solved by examining the sequence of intensity values of the image point for

each sweeping direction and locating the peak intensity value. The position of the

stripe that produces the peak intensity value in each sweeping direction then gives us

the position of the correspondence on the reference pattern. In order to improve the

accuracy of the peak localization, we fit a quadratic curve to the intensity profile in

the neighborhood of the sampled peak value, and solve for the exact peak analytically.

2.3.4 Light Path Triangulation

Suppose high quality correspondences have been established between the images and

the reference pattern under each of the two distinct positions and in each of the two

media (i.e., with and without liquid in the tank). We can reconstruct two PBCs for

each image point using the calibrated positions of the reference pattern. The FEP

can then be recovered as the point of intersection between the two PBCs. Below we

derive a simple solution for the FEP based on the established correspondences of an

image point.

Consider an image point q (see Fig. 2.4). Suppose M0 and M1 denote, respectively,

its correspondences on the reference pattern under position 0 and position 1 with liquid
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Fig. 2.3 The upper row shows images of a transparent hemisphere captured in front of
a gray background (from left to right: reference pattern at a high position and without
water, reference pattern at a high position and with water, reference pattern at a low
position and without water, and reference pattern at a low position and with water).
The lower row shows images of the hemisphere captured in front of a sweeping stripe
(in the same order).
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Fig. 2.4 PBC reconstruction and FEP estimation. The correspondences of an image
point q on the reference pattern under position 0 and position 1 define a PBC. Given
two PBCs in two different media, the FEP for q can be obtained by triangulating the
PBCs.
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in the tank. Similarly, let N0 and N1 denote, respectively, its correspondences on the

reference pattern under position 0 and position 1 without liquid in the tank. M0, M1,

N0 and N1 are in ∈ R3. The PBCs for q in liquid and in air can be expressed as

LM : M(s) = M0 + sU, (2.1)

LN : N(t) = N0 + tV, (2.2)

where U = M1−M0
∥M1−M0∥ and V = N1−N0

∥N1−N0∥ . Under a perfect situation, the FEP for q is

given by the point of intersection between LM and LN .

Due to noise, however, LM and LN often may not intersect with each other exactly

at a point. In this situation, we seek the point Mc = M(sc) on LM and the point Nc =

N(tc) on LN such that the Euclidean distance between Mc and Nc is a minimum. The

distance between Mc and Nc can be taken as a quality measure of the reconstruction.

If the distance is below a specified threshold, the mid-point between Mc and Nc can

be taken as the FEP for q. Note that if U and V are parallel, there will not be a

unique solution. This corresponds to the case where the two PBCs overlap with each

other. This is a degenerate case which happens only when the incident ray is parallel

to the surface normal.

2.3.5 Surface Normal Reconstruction

Recall that for the purpose of surface reconstruction, neither the refractive index of

the object nor that of the liquid is needed. If, however, the refractive index of the

liquid is known a priori, it is possible to recover the surface normal at each FEP. Let

θ1 and θ2 denote the incident angles of the PBCs in the liquid and air, respectively,

at the surface point P , and θ0 denote the refracted angle (see Fig. 2.4). Suppose the

refractive index of the object, liquid and air are given by λ0, λ1 and λ2, respectively.

By Snell’s Law, we have

λ0 sin θ0 = λ1 sin θ1 = λ2 sin θ2. (2.3)
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Let ∆θ = cos−1(U · V) denote the angle between the two PBCs. Substituting this

into (2.3) gives

λ1 sin θ1 = λ2 sin(θ1 + ∆θ). (2.4)

With known refractive indices λ1 and λ2 for the liquid and air, respectively, the incident

angle θ1 can be recovered by

θ1 = tan−1
(

λ2 sin ∆θ

λ1 − λ2 cos ∆θ

)
. (2.5)

The surface normal np at P is then given by

np = R(θ1, V×U)U, (2.6)

where R(θ, a) denotes a Rodrigues rotation matrix for rotating about the axis a by

the angle θ.

2.4 Recovery of Thin Transparent Objects

The method proposed in Section 2.3 requires immersing an object partially into a

liquid. However, this is not an easy task for flat thin transparent objects (e.g., glass

plates, thin lens). In this section, we show that for thin transparent objects, the

requirement of immersing the object partially into a liquid can be removed by a single

refraction approximation, resulting in a simplified setup.

2.4.1 Setup and Assumptions

We follow the same notations used in Section 2.3. As discussed in [38], it is generally

true for thin transparent objects to assume only one refraction occurs along each light

path passing through the object. In general, a light path originates from the reference

plane will be refracted (at least) twice at the surface of the object before it reaches the

camera. However, if the object is very thin, the light path segment inside the object
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becomes negligible. In this case, we can assume only one single refraction along each

light path. To reconstruct a PBC and a visual ray for each image point, the reference

plane is placed at two distinct positions. For each position, two images of the reference

pattern are captured, one with the object between the camera and the reference plane

and the other without the object. After calibrating the positions of the reference plane

and establishing correspondences between the image and the reference plane, we can

reconstruct a PBC and a visual ray for each surface point (see Fig. 2.5). The visual

ray can be reconstructed from the direct view of the pattern (red path in Fig. 2.5)1,

and the PBC can be reconstructed from the refraction of the pattern caused by the

thin surface (blue path in Fig. 2.5).

2.4.2 Surface Reconstruction

Assuming a single refraction occurs along each light path passing through a thin

transparent object, the FEP can be recovered by triangulating the visual ray and

the PBC of each image point. Compared with the general setup discussed in Section

2.3, the requirement of immersing the object partially into the liquid to alter the

incident rays is removed along with the need for a water tank. However, the baseline

between these two rays is quite narrow for a thin surface. It leads to noisy FEP cloud

estimation. With a known refractive index of the object, the surface normal can be

recovered using the method introduced in Section 2.3. In particular, we only need

to replace λ1 (refractive index of the liquid) by λ0 (refractive index of the object) in

(2.5). The surface normal can then be obtained by (2.6). We therefore reconstruct

the surface by integrating surface normals estimated from these rays, which proves to

be more robust to noise.

1If the camera is calibrated w.r.t the reference plane, it is straightforward to recover the visual
ray of an image point, and two images are sufficient to construct the blue PBC. By using four images
as described in the main text, the PBC and visual ray can be constructed even without calibrating
the camera. We only need to calibrate the pattern poses, which is also required by the two-image
method.
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Fig. 2.5 PBC and visual ray construction and surface estimation for thin objects.
The correspondences of an image point q on the reference pattern under position 0
and position 1 define a visual ray (red) and a PBC (blue). The visual ray and PBC
are constructed from the direct view of the pattern and the refraction of the pattern
caused by the object, respectively. Given these two rays, the surface point P for q can
be obtained by ray triangulation, meanwhile the normal for P can also be recovered
using method described in Section 2.3.5.
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2.5 Discussions

2.5.1 Total Internal Reflection

It is well known that total internal reflection will occur if a light ray propagates from

one medium with a larger refractive index to another medium with a smaller refractive

index (e.g., from glass to air), but not for the opposite propagation direction (e.g., from

air to glass). In the scenario of transparent surface reconstruction, as the refractive

index of a solid object is generally larger than that of its surrounding environment

(either air or liquid), total internal reflection will inevitably happen. Here, we discuss

the potential total internal reflection situation when adopting our approach.

Consider a light path traveling from one medium with a refractive index λ1 to

another medium with a refractive index λ2, where λ1 > λ2. Total internal reflection

only happens when the incident angle is greater than the critical angle θc = sin−1(λ2
λ1

).

Fig. 2.6 depicts an example of total internal reflection, where θv < θc and θw > θc.

When total internal reflection happens, the light path may not reach the pattern and

the refraction correspondences cannot be established. On the other hand, if after total

internal reflection at W, the light ray continues to propagate to anther surface point

X, and refracts at X, and eventually reaches the pattern, our approach can still handle

this case.

In practice, total internal reflection does not frequently happen, as the critical

angle is normally very large (e.g., θc = 41.8◦ for glass to air). Only specially designed

objects, like diamonds, will purposely make total internal reflection happen.

2.5.2 Object Analysis

Our general method only has the assumption that light paths (propagating from the

pattern to the camera center) will not re-enter the liquid used for immersing the

object once they enter the object. This assumption holds true for transparent objects

with a convex shape, and for objects with holes completely enclosed inside the object.

It allows us to handle object with an inhomogeneous refractive index. In practice,
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Fig. 2.6 A total internal reflection example. A camera centered at C observes a
transparent hemisphere centered at O and a reference plane is placed below the object.
The blue light path traveling along C, A and V has two refractions at A and V
respectively. While the red light path traveling along C, B and W first refracts at B
and has a total internal reflection at W.
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our method can also handle objects with shallow concavities as long as the previous

assumption is satisfied.

Our thin object reconstruction method has the assumption of a single refraction.

This is generally true for most thin transparent surfaces. The exception happens

when the back and front sides of the surface are planar and parallel. For such surfaces

(see Fig. 2.7), the normals at the first and second refraction points are parallel and

in opposite direction. In this case, the visual ray and PBC are parallel. Our thin

transparent object reconstruction method cannot handle this case.

!1 

!0 

!4 

!3 

n1 

n2 

B 

A 

C 

M N 

Fig. 2.7 Refractions at the surfaces of a parallel planar plate. A camera centered at
C observes a parallel planar surface. A is an upper surface point and B is a lower
surface point along a light path. As their normals n1 and n2 are parallel, the PBC
(BM) is parallel to the visual ray (CA). The angle between these two rays is ∆θ = 0.

2.5.3 Single Refraction Approximation

Here we analyze the error induced by the single refraction approximation used in our

second method, and demonstrate that such an approximation is appropriate for thin

transparent objects.

Referring to Fig. 2.8, we have a camera centered at C observing a thin transparent

object in front of a reference pattern. Let us consider the light path through an

arbitrary image point q, and traverse this light path in reverse direction (i.e., beginning
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Fig. 2.8 Error induced by the single refraction approximation. It can be shown that
the approximation error (i.e., distance between B and E) is linearly proportional to
the thickness of the transparent object (i.e., distance between A and D. Please refer
to the main text for details.

from the optical center of the camera, travelling through the thin transparent object,

and eventually terminating at the reference pattern). After leaving the camera, this

light path first refracts at point A on the upper surface of the transparent object. It

continues to travel through the interior of the object, and refracts at point B on the

lower surface of the object. After leaving the object, it continues to travel through

the air and eventually terminates at a point on the reference pattern. If we apply

the single refraction approximation, we will obtain point E from the intersection of

the PBC and the visual ray of q. Note that the FEP for q should be point B, and

therefore the distance between B and E is the approximation error.

Suppose we make the thin transparent object even thinner by moving its lower

surface along its surface normal towards its upper surface, resulting in the new lower

surface represented by the dotted line in Fig. 2.8. After leaving the camera, the light

path for q again first refracts at point A on the upper surface of the transparent object.

It continues to travel through the interior of the object, but this time refracts at point

B0 on the lower surface of the thinner object. After leaving the object, it continues to
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travel through the air and eventually terminates at a point on the reference pattern.

If we apply the single refraction approximation again, we will obtain point E0 from

the intersection of the PBC and the visual ray of q. Similarly, the distance between

B0 and E0 is the approximation error for this thinner object.

Consider the similar triangles△AB0P0 and△ABP. It is easy to see from Fig. 2.8

that ∥AB0∥ : ∥AB∥ = ∥AD0∥ : ∥AD∥. Hence, we have ∥B0P0∥ : ∥BP∥ = ∥AB0∥ :

∥AB∥ = ∥AD0∥ : ∥AD∥. Consider now the similar triangles △B0P0E0 and △BPE.

We have ∥B0E0∥ : ∥BE∥ = ∥B0P0∥ : ∥BP∥ = ∥AD0∥ : ∥AD∥. Hence, we can

conclude that the approximation error is linearly proportional to the thickness of the

transparent object, and therefore the single refraction approximation is appropriate

for thin transparent objects.

It is also worth to note that the difference between the surface normals at the upper

and lower surface points along the same light path will also affect the reconstruction

accuracy under the single refraction approximation. If we increase the difference be-

tween the surface normals at A and B by rotating the lower surface around B, E will

get closer to B, which indicates a smaller reconstruction error.

2.5.4 Limitations

Our first method assumes that light paths will not re-enter the object once they exit

the object. However, there do exist some complex transparent objects that break this

assumption, such as objects with multiple holes which are not fully enclosed inside the

objects. Our first method cannot handle such objects. Besides, if the incident light ray

is parallel to the surface normal, our method cannot reconstruct the FEP. Our first

method can only reconstruct one side of the object at a time. When a complete 3D

model of the object is required, we need to rotate the object to reconstruct it part by

part. Our second method adopts a single refraction approximation for thin transparent

objects. This approximation can simplify our setup, but it will also introduce some

errors as discussed above. Therefore, it cannot be applied to highly accurate surface

reconstruction. When the back and front sides of the surface are planar and parallel,
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the single refraction approximation cannot be applied.

2.6 Experimental Evaluation

We now demonstrate the effectiveness of our approach on synthetic and real objects.

In the remainder of this section, we present both quantitative and qualitative recon-

struction results. In the following, for the sake of clarity, we denote our general method

that uses liquid to alter the incident light path as the first method, and the method

that uses the object itself to alter the incident light path, which is tailored for thin

transparent objects, as the second method.

2.6.1 Synthetic Data

First method on a convex object. For our synthetic experiments, we used Pov-

Ray to simulate the entire experimental setup. First, we modeled a convex transparent

object as a semi-ellipsoid with the following parametric equation


(

x

12.5

)2
+
(

y

12.5

)2
+
(

z

5

)2
= 1,

z > 0.

(2.7)

We further assumed the transparent ellipsoid has a refractive index λ = 1.5.2 A

reference plane displaying a set of thin stripe sweeping patterns was placed at two

different positions. The size of the reference plane was 32 × 32 units in Pov-Ray

environment and the thickness of the stripe was 1
32 unit. A synthetic perspective

camera with a resolution of 1024 × 1024 was used to capture the refraction of the

reference pattern through the transparent object immersed in air (λ = 1.0) and liquid

(λ = 1.3) respectively. We adopted the strategies described in Section 2.3.3 to obtain

dense refraction correspondences. More than 700K refraction correspondences were

used in our synthetic experiment.
2The transparent object can be inhomogeneous, namely the refractive index varies across the

interior of the object.
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Fig. 2.9 Reconstruction of a synthetic semi-ellipsoid using the first method. First
row: Ground truth. Second row: Our reconstructed results. First column: FEP
cloud. Second column: angle between the PBCs in a pair. Third column: depth map.
Fourth column: normal map.

We reconstructed a pair of PBCs for each FEP based on the retrieved refraction

correspondences. The transparent surface was then recovered from the ray triangula-

tion of PBC pairs. We also computed the surface normals from the PBC pairs and

the refractive indices of the media. Fig. 2.9 depicts the reconstructed FEP cloud as

well as surface normals. It also shows the depth map of the reconstructed object for

accuracy evaluation3.

In practice, reconstruction errors originate from the inaccuracy in finding the re-

fraction correspondences on the reference patterns. Errors may increase as the relative

distance between the two positions of the reference pattern decreases. We therefore

carried out a joint analysis by adding 2D zero-mean Gaussian noise to the extracted

dense correspondences on the reference pattern together with varying the relative dis-

tance between the two positions of the reference pattern. The noise level ranged from

0.1 to 1.0 unit. The relative distance between the positions of the reference pattern

varied from 5 to 20 units. We fixed the first position of the reference pattern at

z = 10 in our experiment, and varied the second position of the pattern by placing it
3The depth map is defined as the z component for each 3D point.
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Fig. 2.10 RMS errors for the positions and normals of the FEPs reconstructed using the
first method. (a)-(b) show the RMS errors for the positions and normals, respectively,
over 500 rounds with different random noise and relative distances between the two
positions of the reference pattern. In particular, we fixed the first position of the
reference pattern at z = 10 in our experiment, and varied the second position of the
pattern by placing it at z = 15, 20, 25, 30, respectively. (c)-(d) show the RMS errors for
the positions and normals, respectively, over 500 rounds with different random noise
and refractive indices of the media. In particular, we tested three refractive indices
(λ = 1.3, 1.5, 1.7).
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at z = 15, 20, 25, 30, respectively. The reconstruction accuracy was evaluated based

on the root mean square (RMS) error between the ground truth surface and the re-

construction. We further computed the angular distances between our reconstructed

normals and the ground truth normals computed from the analytical equation of the

semi-ellipsoid. Fig. 2.10(a-b) show the RMS errors for the positions and normals of

the reconstructed FEPs under different noise level and relative distances between the

two positions of the reference pattern. It shows that the reconstruction errors decrease

as the distance between the two positions of the reference pattern increases.

We further conducted an analysis on the reconstruction error with respect to the

refractive index of the liquid medium. Two other media with different refractive indices

were tested in the experiment, namely λ = 1.5 and λ = 1.7. The reference pattern was

placed at z = 6 and z = 10, respectively. Fig. 2.10(c-d) show that the reconstruction

errors decrease as the refractive index of the medium increases.

First method on a concave object. We also evaluated our method on a concave

surface with λ = 1.7, which was defined by the difference between a cylinder and a

right circular cone. The radius and height of the cylinder were 5 and 10 respectively,

while the height and radius of the cone were 4 and 10 respectively. The resulting

shape was an object with a cylinder outer shape and a right circular cone inner shape.

We reconstructed the inner shape of the object in this experiment by immersing the

concave side of the object into water. Fig. 2.11 summarizes the results. The RMS

error for FEP was 0.141 unit, and the RMS error for normal was 1.58◦. It shows that

our method can successfully reconstruct object with concavity as long as the light rays

do not re-enter the object once they exit the object.

Second method on a thin convex cone. Under the same synthetic environment

as described above, we rendered a thin object to evaluate our approach in Section 2.4.

We evaluated our thin transparent object reconstruction method on a right circular

cone with λ = 1.7. Its height and radius were 1 and 4 respectively.

The reference plane was placed at z = 20 and z = 30 respectively. A synthetic

perspective camera with a resolution of 1024× 1024 was used to capture the image of
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Fig. 2.11 Reconstruction of a concave transparent object using the first method. From
left to right: the reconstructed FEP cloud (color coded by angle between the PBCs in
a pair); error map between ground truth FEPs and reconstructed FEPs; reconstructed
normal map; error map between ground truth normals and reconstructed normals.
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Fig. 2.12 Reconstruction of two synthetic thin objects using the second method: (a)
thin cone; (b) spherical shell. First column: reconstructed normal map. Second
column: error map between ground truth normals and reconstructed normals. Last
two columns: two views of the reconstructed surface (the second view is a cross-section
view).
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the pattern directly and through the thin object, respectively. After we established four

correspondences for each pixel, a PBC and a visual ray were reconstructed accordingly.

The surface normals were then recovered using our method described in Section 2.4.

Other than the correspondence quality, the distance of the two positions of the pattern

and the refractive index as discussed above, the accuracy of our thin transparent object

reconstruction method will also be affected by the thickness of the objects. Hence we

carried out a joint analysis by adding 2D zero-mean Gaussian noise to the extracted

dense correspondences on the reference pattern together with varying thickness of the

object. The noise level ranged from 0.1 to 1.0 units. The varying of the thickness

was achieved by padding the cone with a cylinder of the same radius and setting the

height of the cylinder to h = 0.0, 0.5, 1.0, 2.0, respectively. Fig. 2.12(a) shows the

reconstruction result for h = 0, i.e., the cone without padding the cylinder. The

errors induced by the single refraction approximation were small (< 2◦). The joint

analysis results are presented in Fig. 2.13. For a fixed thickness, with an increase of

noise level, the RMS error of the estimated surface normals does not change a lot.

This demonstrates the robustness of our approach. It can also be seen that the errors

decrease with thickness of the object.

Second method on a spherical shell. We constructed a thin transparent spher-

ical shell with λ = 1.7 by subtracting a solid transparent sphere defined by (2.8) from

another solid transparent sphere defined by (2.9).

(
x

10

)2
+
(

y

10

)2
+
(

z − s

10

)2
= 1, s ∈ {1, 2, 3, 4, 5} (2.8)

(
x

10

)2
+
(

y

10

)2
+
(

z

10

)2
= 1 (2.9)

Similar joint analysis as before was also conducted for this object. The varying

of the thickness was achieved by setting different s value in (2.8), which specifies the

distance between the two sphere centers. Fig. 2.12(b) shows the reconstruction result

for s = 3. Fig. 2.14 depicts the results of the joint analysis. For this object, the error
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Fig. 2.13 Error of surface normals recovered using the second method for a synthetic
thin convex cone under different thicknesses. A cylinder was padded to the cone to
change its thickness. The thickness values of the padded cylinder are shown in the
legend.

does not keep decreasing with its thickness. The error decreases with the thickness at

first, but then it starts to increase after some particular thickness (e.g., 3 units in our

experiment). For the spherical shell, with the decrease of its thickness, the difference

between the normals at the upper and lower surface points will also decrease. When

the object gets too thin, the normals at the upper and lower surface points along

each light path tend to become parallel. In this case, the single refraction assumption

is no longer applicable. In contrast, for the thin convex cone, the normals at the

upper and lower surface points along each light path keep the same with the change

of the thickness of the object, and the errors decrease with thickness of the object (see

Fig. 2.13).

2.6.2 Real Data

To evaluate the accuracy of our first method on real data, we performed experi-

ments on a smooth glass hemisphere, a diamond-shape ornament with piecewise planar

surfaces (see Fig. 2.1), and a small bottle (see Fig. 2.17). We acquired images with

a Canon EOS 40D camera equipped with a 24 mm lens and used a 9.7-inch iPad
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Fig. 2.14 Error of surface normals recovered using the second method for a synthetic
thin spherical shell under different thicknesses. The thickness values are shown in the
legend, which are the distances between the two sphere centers defined by s in (2.8).

with a resolution of 2048× 1536 as the reference plane. We displayed stripe patterns

on the iPad for extracting the dense refraction correspondences using the strategy in

Section 2.3.3. In order to reconstruct PBCs, the reference plane was placed at two

different positions in a water tank. Under each position, we first took one set of im-

ages of the sweeping stripe patterns refracted by the object directly. We then filled

the tank with water, having a refractive index λ = 1.33, to alter the PBCs and took

another set of images. In brief, four sets of images with a resolution of 3888 × 2592

were captured for each object. This yielded dense correspondences (see Table 2.1).

The poses of the reference plane relative to the camera were calibrated with Matlab

Calibration Toolbox [54].

A pair of PBCs were reconstructed from the extracted refraction correspondences

for each image point. These PBCs were triangulated to give an estimate of the FEP.

We treated those reconstructed FEPs with a small PBC angle (< 1◦), or out of the

depth range between the camera and reference plane as noise points. The normal for

each FEP was then recovered with the knowledge of refractive indices 1.0 and 1.33 for

air and water respectively. In Fig. 2.15, we show our reconstructed 3D FEP cloud,

angles between the PBCs in a pair, depth map, and surface normals for hemisphere
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Table 2.1 Statistics for our real experiment with the first method. We show the number
of captured encoding pattern images, refraction correspondences, reconstructed FEPs,
and reconstructed normals for our dense reconstructions of hemisphere, ornament and
bottle, respectively.

hemisphere ornament bottle

Images 2,800 2,200 2,100
Corres. 1,180,300 546,173 483,052
FEPs 1,115,748 519,162 471,874
Normals 1,115,748 519,162 471,874
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Fig. 2.15 Reconstruction results of the first method on real data. First row:
hemisphere reconstruction results. Second row: ornament reconstruction results.
The first column shows the reconstructed FEPs; the second column shows the angle
between each PBC pairs; the third column shows the depth map; the fourth column
shows the reconstructed normal map.
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Fig. 2.16 Two views of the reconstructed surface using the first method. First two
columns: hemisphere reconstruction results (the second view is a cross-section view).
Last two columns: ornament reconstruction results. Note the shown surfaces are the
surfaces touching the water in the experiment.

and ornament respectively. Note that large reconstruction errors occur in regions with

small PBC angles. We also employed the integration method proposed by Xie et al. in

[56] to generate surface meshes with our recovered normals. These meshes are shown

in Fig. 2.16.

Since no ground truth was available, a sphere was fitted to the FEP cloud to eval-

uate the reconstruction accuracy for the hemisphere. We compared the fitted radius

with the physical measurement, which were 26.95 mm and 27.99 mm, respectively.

The error was 1.04 mm (i.e., 3.7% compared with the measurement). Table 2.2 shows

the reconstruction errors of the hemisphere compared against the fitted sphere. The

mean and median FEP position errors were < 0.6 mm, and the mean and median

normal errors were < 7.0◦. This shows a high accuracy of the reconstruction. In

order to evaluate the reconstruction of the ornament, we first used RANSAC [57] to

fit a plane for each facet. The reconstruction error for each facet was measured by

the distances from the reconstructed FEPs to the fitted plane, as well as the angles

between the reconstructed normals and the normal of the fitted plane. The results

shown in Table 2.3 suggest that our proposed approach can accurately reconstruct the

piecewise planar ornament. The mean and median FEP position errors were < 1.0

mm 4 and the mean and median normal errors were < 10.0◦.

4Except facet 6 with a mean of 1.0442.
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Table 2.2 Reconstruction errors of hemisphere using the first method. The position
error is defined as the difference between the distance from the fitted center to each
FEP and the length of fitted radius. The normal error is defined as the angle between
the ray from the fitted center to each FEP and the reconstructed normal for each FEP.

Position (mm) Normal (degree)
Mean error 0.5903 6.9665
Median error 0.4179 6.9215

Table 2.3 Reconstruction error measurements of ornament. Left figure: shows the
labels for each facet of the ornament. Right table: shows the various error metric used
in reconstruction error evaluation for ornament. Due to its piecewise property, we
fitted each facet using RANSAC with an inlier threshold of 0.5mm and then measured
the distances from the FEPs to the fitted plane and also the angle difference between
the reconstructed normals of each facet region and the fitted facet normal.

1 2 3 
4 5 

6 

Facet label 1 2 3 4 5 6
Mean normal error (degree) 6.2654 9.9585 7.5905 9.6871 3.6591 6.8677
Median normal error (degree) 6.1677 9.5906 7.5109 9.7511 3.4741 6.7908
Mean position error (mm) 0.7250 0.6814 0.6675 0.6767 0.5881 1.0442
Median position error (mm) 0.6108 0.5945 0.5755 0.5721 0.5133 0.6333
RANSAC position inliers (%) 40.33 42.97 44.06 43.38 49.02 40.64
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Besides, we also validated our approach on a hollow object by reconstructing a

small transparent bottle. The reconstruction result is presented in Fig. 2.17 and the

reconstructed surface mesh is shown in Fig. 2.18. The measured height and radius were

55.65 mm and 14.18 mm respectively, and the body part (red box region in Fig. 2.17)

of the bottle is 44.73 mm in height. We fitted a cylinder to the reconstructed point

cloud using MLESAC [58]. We set the point-to-cylinder distance threshold to 0.5 mm

during fitting, and 41.17% of reconstructed FEPs are inliers. The fitted height and

radius were 46.26 mm and 15.32 mm respectively. Both the height error and radius

error were < 2 mm. The position error and normal error are shown in Table 2.4.

Fig. 2.17 Reconstruction result for bottle using the first method. Left to right: real
object (red box highlights the region for reconstruction); reconstructed FEPs; angle
between the PBCs in a pair; estimated depth map; reconstructed normal map.

Fig. 2.18 Two views of the bottle reconstructed using the first method.

To evaluate our second method on real data, we applied our method on two

thin glass plates, namely a circular plate and a fish plate (see the first column in

Fig. 2.20). Since the objects were considered thin enough (≈ 0.3 cm), compared with

the size of the objects (circular plate : diameter = 17.5 cm, fish plate: 25.6 cm × 20.7

cm) and the distance between the camera and the objects (≈ 50 cm), the light path
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Table 2.4 Reconstruction errors of bottle using the first method. The position error
is defined as the difference between the distance from the fitted cylinder axis to each
FEP and the length of fitted radius. The normal error is defined as the angle between
the normal computed analytically from the fitted cylinder and the reconstructed one
for each FEP.

Position (mm) Normal (degree)
Mean error 0.6356 6.1256
Median error 0.6278 5.9183

displacements inside the objects could be ignored. Fig. 2.19 shows our real setup for

thin object recovery. We used a 19-inch LCD display with a resolution of 1280× 1024

as the reference plane. Similar to the experiments done before, we captured four sets

of images to establish refraction correspondences for each image point by arranging

the display in two different positions. Differently, it was not necessary to immerse the

thin object partially in a liquid any more. The simplified setup largely reduced the

efforts in taking images.

Fig. 2.19 Real reconstruction setup for thin transparent objects.

We first captured an image sequence of the moving stripe on the reference plane,

and then put the object in front of the camera to take another sequence. To take the

third sequence, we moved the the reference plane to another position while keeping
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the camera and object stationary. We then removed the object and took the last

sequence. After reconstructing a PBC and visual ray for each observed surface point,

the surface normals were recovered with the known refractive index of glass (λ = 1.52).

Due to the absence of the ground truth, we can only qualitatively evaluate our results.

Fig. 2.20 shows the recovered normal map. The angles between rays in a pair are

larger for regions with more details as these regions are less planar. The recovered

normal maps were consistent with the real objects. The reconstructed surfaces are

shown in Fig. 2.21, which can correctly show the details of the real objects.

Fig. 2.20 Reconstruction results of the second method on real data. First row:
circular plate reconstruction results. Second row: fish plate reconstruction results.
The first column shows the real objects under room illumination; the second column
shows the refraction of the pattern caused by the objects; the third column shows the
angle between the visual ray and PBC in a pair; the last column shows the recon-
structed normal map.

2.7 Conclusions

In this chapter, we develop a fixed viewpoint approach to dense surface reconstruction

of transparent objects. We introduce a simple setup that allows us to alter the incident

light paths by immersing the object partially in a liquid, while keeping the rest of the

light paths fixed as light rays travel through the object. This greatly simplifies the
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Fig. 2.21 Two views of the surface reconstructed using the second method. First
two columns: circular plate reconstruction results. Last two columns: fish plate

reconstruction results.

problem by making it not necessary to model the complex interactions of light inside

the object, and allows the object surface to be recovered by triangulating the incident

light paths. Our approach can handle transparent objects with a relatively complex

structure, with an unknown and inhomogeneous refractive index. The only assumption

to the objects is that the light paths should not re-enter the liquid medium once they

enter the object. If the refractive index of the liquid is known a priori, our method can

also recover the surface normal at each reconstructed surface point. Besides, for thin

transparent objects, we show that the acquisition setup can be simplified by adopting a

single refraction approximation. Experimental results demonstrate both the feasibility

and robustness of our methods.



Chapter 3

Single View Mirror Surface

Reconstruction

3.1 Introduction

3D reconstruction of diffuse surfaces has enjoyed tremendous success. Diffuse surfaces

reflect light from a single incident ray to many rays in all directions, resulting in a

constant appearance regardless of the observer’s viewpoint. Methods for diffuse surface

reconstruction can therefore rely on the appearance of the object.

This chapter considers mirror surfaces, which exhibit specular reflections and whose

appearances are a reflection of the surrounding environment. Under specular reflection,

an incoming ray is reflected to a single outgoing ray. This special characteristic leads

to different appearances of the mirror surface under different viewpoints, and renders

diffuse surface reconstruction methods useless. Meanwhile, there exist many objects

with a mirror surface in the man-made environment. The study of mirror surface

reconstruction is therefore an important problem in computer vision.

In this chapter, we assume the mirror surface reflect a light ray only once, and

tackle the mirror surface reconstruction problem by adopting a common approach of

introducing motion to the environment. Unlike previous methods which require a fully

calibrated camera and known motion, we propose a novel solution based on observing



44 Single View Mirror Surface Reconstruction

M
X0

X1

X2

m
x0x1x2

(a) (b)

Fig. 3.1 (a) A stationary uncalibrated camera observing the reflections of a reference
plane undergoing an unknown motion. (b) Surface points can be recovered using the
cross-ratio between a surface point M and its reflection correspondences {X0, X1, X2}.

the reflections of a reference plane undergoing an unknown motion with a stationary

uncalibrated camera (see Fig. 3.1(a)).

2D correspondences between the image and the reference plane are established by

displaying a sweeping line on the plane (we use a computer screen as the reference

plane in practice). The relative poses of the reference plane are then estimated [59],

and rays piercing the plane under different poses are determined for each image point

on the mirror surface.

Given the rays and their corresponding image points, we first derive an analytical

solution to estimate the camera projection matrix through estimating the line projec-

tion matrix. Such a line projection matrix can then be transformed to a corresponding

camera (point) projection matrix [60]. To make our solution more robust to noise, we

use this closed-form solution as an initialization and optimize the camera projection

matrix by minimizing reprojection errors computed based on a cross-ratio formulation

for the mirror surface (see Fig. 3.1(b)). The mirror surface is finally reconstructed

based on the optimized cross-ratio constraint.

The key contributions of this work are
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• To the best of our knowledge, the first mirror surface reconstruction solution

under an unknown motion and an uncalibrated camera.

• A closed-form (linear) solution for estimating the camera projection matrix from

reflection correspondences.

• A cross-ratio based nonlinear formulation that allows a robust estimation of the

camera projection matrix together with the mirror surface.

3.2 Related Work

Great efforts have been devoted to the problem of mirror surface recovery [14, 15, 49].

Based on the assumed prior knowledge, shape recovery methods for mirror surfaces can

be classified into those assuming an unknown distant environment and those assuming

a known nearby environment.

Under an unknown distant environment, a set of methods referred to as shape from

specular flow (SFSF) have been proposed. In [61], Oren and Nayar successfully recov-

ered a 3D curve on the object surface by tracking the trajectory of the reflection of a

light source on the mirror surface. However, it is difficult to track a complete trajec-

tory since the reflected feature will be greatly distorted near the occluding boundary

of an object. Roth and Black [62] introduced the concept of specular flow and derived

its relation with the 3D shape of a mirror surface. Although they only recovered a

surface with a parametric representation (e.g., sphere), their work provides a theoret-

ical basis for the later methods. In [63, 64], Adato et al. showed that under far-field

illumination and large object-environment distance, the observed specular flow can be

related to surface shape through a pair of coupled nonlinear partial differential equa-

tions (PDEs). Vasilyev et al. [65] further suggested that it is possible to reconstruct

a smooth surface from one specular flow by inducing integrability constraints on the

surface normal field. In [66], Canas et al. reparameterized the nonlinear PDEs as

linear equations that lead to a more manageable solution.
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Although SFSF achieves a theoretical breakthrough in shape recovery of mirror

surfaces, the essential issues in tracking dense specular flow and in solving PDEs still

hinder their practical use. In [67], Sankaranarayanan et al. developed an approach

that uses sparse specular reflection correspondences instead of specular flow to recover

a mirror surface linearly. Their proposed method is more practical than the tradi-

tional SFSF methods. Nevertheless, their method requires quite a number of specular

reflection correspondences across different views, which are difficult to obtain due to

the distorted reflections on the mirror surface.

Under a known nearby environment, a different set of methods for shape recovery

of mirror surfaces can be derived. The majority of these methods are based on the

smoothness assumption on the mirror surface. Under this assumption, one popular

way is to formulate the surface recovery into the problem of solving PDEs. In [68, 69],

Savarese and Perona demonstrated that local surface geometry of a mirror surface can

be determined by analyzing the local differential properties of the reflections of two

calibrated lines. Following the same fashion, Rozenfeld et al. [70] explored the 1D

homography relationship between the calibrated lines and the reflections using sparse

correspondences. Depth and first order local shape are estimated by minimizing a

statistically correct measure, and a dense 3D surface is then constructed by performing

a constrained interpolation. In [12], Liu et al. proved that a smooth mirror surface can

be determined up to a two-fold ambiguity from just one reflection view of a calibrated

reference plane.

Another way to formulate the mirror surface recovery is by employing normal

consistency property to refine visual hull and/or integrate normal field. In [71], Bonfort

and Sturm introduced a voxel carving method to reconstruct a mirror surface using a

normal consistency criterion derived from the reflections of some calibrated reference

planes. In order to get a better view for shape recovery, they further proposed that the

camera may not need to face the reference plane, and the shape can be well recovered

by using a mirror to calibrate the poses of the reference plane [72, 73]. In [74], Nehab

et al. formulated the shape recovery as an image matching problem by minimizing
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a cost function based on normal consistency. In [75], Weinmann et at. employed a

turntable setup with multiple cameras and displays, which enables the calculation of

the normal field for each reflection view. The 3D surface is then estimated by a robust

multi-view normal field integration technique. In [76], Balzer et al. deployed a room-

sized cube consisting of six walls that encode/decode specular correspondences based

on a phase shift method. The surface is then recovered by integration of normal fields.

Another approach is to reconstruct the individual light paths based on the law of

reflection. Kutulakos and Steger [31] showed that a point on a mirror surface can be

recovered if the positions of two reference points are known in space and reflected to

the same image point in a single view, or the positions of two reference points are

known and are reflected by the same surface point to two different views. In [59],

Liu et al. established reflection correspondences on the reference plane under three

distinct poses, and derived a method for recovering the relative poses of the plane.

Given the camera intrinsics, the camera pose can also be solved and the surface can

be recovered by ray triangulation.

Note that calibration plays an important role in all the above methods that as-

sume a known nearby environment. The calibration procedure is often very tedious

and laborious for most of the mirror surface reconstruction systems. Normally, mul-

tiple images of a known pattern are required, and both the camera and the pattern

poses need to be calibrated. Extra efforts may be needed due to the design of dif-

ferent systems. In this work, we neither make assumption on the smoothness of the

mirror surface, nor require the calibration of the camera. Our proposed approach can

automatically calibrate the setup as well as reconstruct the mirror surface using the

observed reflections of the reference plane.

Cross-ratio constraint has been used to estimate mirror position and camera pose

for axial non-central catadioptric systems [77], and produce more point correspon-

dences in the context of 3D reconstruction [78]. Our method also relies on a cross-ratio

constraint to optimize the camera projection matrix as well as recovering the mirror

surface. Unlike existing methods where both the mirror and the reference plane are
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simultaneously visible to the camera (e.g., [79]), we tackle a more challenging scenario

where only the mirror surface is visible.

3.3 Acquisition Setup

M

X0
X1

X2

m

C

P2
P1

P0
S

I[R|T]

Fig. 3.2 Setup used for mirror surface reconstruction. Refer to Section 3.3 for notations
and definitions.

Fig. 3.2 shows the setup used for mirror surface reconstruction. Consider a pinhole

camera centered at C observing the reflections of a moving reference plane on a mirror

surface S. Let X0 be a point on the plane at its initial pose, denoted by P0, which is

reflected by a point M on S to a point m on the image plane I. Suppose the reference

plane undergoes an unknown rigid body motion, and let P1 and P2 denote the plane

at its two new poses. Let X1 and X2 be points on P1 and P2, respectively, which

are both reflected by M on S to the same image point m on I. X0, X1 and X2 are

referred to as reflection correspondences of the image point m.

3.4 A Closed-form Solution

In this section, we first briefly review Plücker coordinates and the line projection

matrix. We then derive a linear method for obtaining a closed-form solution to the
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line projection matrix of a camera from reflection correspondences of the image points.

3.4.1 Plücker Coordinates

A 3D line can be described by a skew-symmetric Plücker matrix L = QPT −PQT =



0 q1p2 − q2p1 q1p3 − q3p1 q1p4 − q4p1

q2p1 − q1p2 0 q2p3 − q3p2 q2p4 − q4p2

q3p1 − q1p3 q3p2 − q2p3 0 q3p4 − q4p3

q4p1 − q1p4 q4p2 − q2p4 q4p3 − q3p4 0


, (3.1)

where P = [p1 p2 p3 p4]T and Q = [q1 q2 q3 q4]T are the homogeneous representations

of two distinct 3D points on the line. Since L is skew-symmetric, it can be represented

simply by a Plücker vector L consisting of its 6 distinct non-zero elements

L =



l1

l2

l3

l4

l5

l6


=



q1p2 − q2p1

q1p3 − q3p1

q1p4 − q4p1

q2p3 − q3p2

q3p4 − q4p3

q4p2 − q2p4


. (3.2)

Dually, a matrix L̄ can be constructed from two distinct planes with homoge-

neous representations P̂ and Q̂ as L̄ = Q̂P̂T − P̂Q̂T. The dual Plücker vector can be

constructed directly from L̄ or by rearranging the elements of L as

L̄ = [l5 l6 l4 l3 l1 l2]T. (3.3)

Let A = [a1 a2 a3]T and B = [b1 b2 b3]T be two distinct 3D points in Cartesian

coordinates. Geometrically, the line defined by these points can be represented by a

direction vector ω = (A−B) = [l3,−l6, l5]T and a moment vector ν = (A×B) =

[l4,−l2, l1]T, which define the line up to a scalar factor.
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Two 3D lines L and L′ can either be skew or coplanar. The geometric requirement

for the latter case is that the dot product between the direction vector of the first line

and the moment vector of the second line should equal the negative of the dot product

between the direction vector of the second line and the moment vector of the first line.

Let the two lines have direction vectors ω, ω′ and moment vectors ν, ν ′, respectively.

They are coplanar (i.e., either coincident or intersect) if and only if

ω · ν ′ + ν · ω′ = 0⇔ L · L̄′ = 0. (3.4)

Note that a Plücker vector is not any arbitrary 6-vector. A valid Plücker vector

must always intersect itself, i.e.,

L · L̄ = 0⇔ det(L) = 0. (3.5)

3.4.2 Line Projection Matrix

Using homogeneous coordinates, a linear mapping can be defined for mapping a point

X in 3D space to a point x in a 2D image, i.e.,

x = PX, (3.6)

where P is a 3× 4 matrix known as the camera (point) projection matrix. Similarly,

using Plücker coordinates, a linear mapping can be defined for mapping a line L in

3D space to a line l (in homogeneous coordinates) in a 2D image, i.e.,

l = PL̄, (3.7)

where P is a 3×6 matrix known as the line projection matrix. Note that each row PT
i

(i ∈ {1, 2, 3}) of P represents a plane (in homogeneous coordinates) that intersects

at the optical center. Dually, each row PT
i (i ∈ {1, 2, 3}) of P represents a line that

intersects at the optical center (see Fig. 3.3). It follows that a valid line projection
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matrix must satisfy

Pi · P̄j = 0 ∀ i, j ∈ {1, 2, 3} ⇔ PP̄T = 03,3, (3.8)

where P̄{1,2,3} denotes the dual Plücker vector (3.3) and P̄ = [P̄1 P̄2 P̄3]T.

.

.

C

u

vP2T

P1T

P3T

o

C

u

v

P2T

P1T

P3T

o

(a) (b)

Fig. 3.3 (a) Rows of a point projection matrix represent planes that intersect at the
optical center C of the camera. (b) Dually, rows of a line projection matrix represent
lines that intersect at the optical center.

3.4.3 Estimating the Line Projection Matrix

To estimate the line projection matrix of the camera, we first employ the method

described in [59] to recover the relative poses of the reference plane under three distinct

poses using reflection correspondences established across the images (see Appendix

A). We can then form a 3D Plücker line L from the reflection correspondences of each

observed point x in the image. Note that, by construction, x must lie on the projection

of L, i.e.,

xTPL̄ = 0. (3.9)
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Given a set of 3D space lines {L1, ...,Ln} constructed for a set of image points

{x1, ..., xn}, the constraint derived in (3.9) can be arranged into

AP⃗ = 0, (3.10)

where P⃗ = [PT
1 PT

2 PT
3 ]T and

A =


xT

1 ⊗ L̄T
1

...

xT
n ⊗ L̄T

n

 .1 (3.11)

The line projection matrix of the camera can then be estimated by solving

argmin
P⃗
∥AP⃗∥2 (3.12)

subject to ∥P⃗∥ = 1. The line projection matrix obtained thus can be transformed into

a point projection matrix and vice versa (see Appendix B). Note that, however, (3.12)

minimizes only algebraic errors and does not enforce (3.8). The solution to (3.12) is

therefore subject to numerical instability and not robust in the presence of noise.

Instead of solving (3.12), we can minimize the geometric distance from each image

point to the projection of the corresponding 3D line. Let l = [a, b, c]T = PL̄ be the

projection of the 3D line L corresponding to an image point x = [x1, x2, x3]T. P can

be estimated by solving

argmin
P

n∑
i=1

(xT
i PL̄i)2

ai
2 + bi

2 (3.13)

subject to ∥P∥ = 1, where ∥P∥ is the Frobenius norm of P . A straight-forward

approach to enforce (3.8) is by incorporating it as a hard constraint in (3.13). However,

experiments using a number of state-of-the-art optimization schemes show that such

a solution often converges to local minima.

1⊗ stands for Kronecker product.
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3.4.4 Enforcing Constraints

Given a proper camera projection matrix, the corresponding line projection matrix

will automatically satisfy (3.8). However, given an improper 3 × 6 line projection

matrix not satisfying (3.8), the corresponding camera projection matrix cannot be

decomposed into one with proper intrinsic and extrinsic parameters. Based on this

observation, we propose to enforce (3.8) by enforcing a proper decomposition of the

camera projection matrix.

Consider a simplified scenario where the principal point (u0, v0) (which is often

located at the image centre) is known. After translating the image origin to the

principal point, the camera projection matrix can be expressed as

P = K[R T] =


fx 0 0

0 fy 0

0 0 1




r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 ,

and the corresponding line projection matrix can be expressed as

P =


fy 0 0

0 fx 0

0 0 fxfy

P ′, (3.14)

where

P ′T
i =



ρ′
i1

ρ′
i2

ρ′
i3

ρ′
i4

ρ′
i5

ρ′
i6


= (−1)(i+1)



rj3tk − tjrk3

tjrk2 − rj2tk

rj2rk3 − rj3rk2

rj1tk − tjrk1

rj1rk2 − rj2rk1

rj1rk3 − rj3rk1


, (3.15)
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with i ̸= j ̸= k ∈ {1, 2, 3} and j < k. (3.10) can then be rewritten as

AP⃗ = ADP⃗ ′ = A′P⃗ ′ = 0, (3.16)

where A′ = AD and D is a 18 × 18 diagonal matrix with dii = fy for i ∈ {1, ..., 6},

dii = fx for i ∈ {7, ..., 12}, and dii = fxfy for i ∈ {13, ..., 18}.

With known fx and fy, P⃗ ′ can be estimated by solving (3.16). Since P ′ only

depends on the elements of R and T, it can be converted to a point projection matrix in

the form of λ[R T]. The magnitude of λ is determined by the orthogonality of R, and

its sign is determined by the sign of t3. Hence, given the camera intrinsics, the camera

extrinsics can be recovered using the reflection correspondences. [59] also provides

another way for estimating R and T with given camera intrinsics. In Section 3.5, we

tackle the problem of unknown camera intrinsics by formulating the problem into a

nonlinear optimization by minimizing reprojection errors computed based on a cross-

ratio formulation for the mirror surface. For initialization purpose, we assume (u0, v0)

being located at the image center, and fx = fy = f . We choose a rough range of f and

for each sample value of f within the range, we estimate R and T by solving (3.16).

The point to line distance criterion in (3.13) is applied to find the best focal length

f ′. A camera projection matrix can then be constructed using f ′, (u0, v0), R and T

that satisfies all the above mentioned constraints.

3.5 Cross-ratio Based Formulation

In this section, we obtain the camera projection matrix and the mirror surface by

minimizing reprojection errors. We will derive a cross-ratio based formulation for

recovering a 3D point on the mirror surface from its reflection correspondences. Note

that minimizing point-to-point reprojection errors can provide a stronger geometrical

constraint than minimizing the point-to-line distances in (3.13) (see Fig. 3.4).

Consider a point M on the mirror surface (see Fig. 3.5). Let X0, X1 and X2 be its

reflection correspondences on the reference plane under three distinct poses, denoted
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l′ d′
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m′
r

d′
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Fig. 3.4 Minimizing point-to-line distance does not guarantee minimizing point-to-
point distance. A 3D point M and a 3D line L passing through it are projected by
P to a 2D point mr and a 2D line l, respectively. Let m denote the observation of
M. The distance between m and mr is dp, and the distance between m and l is
dl. Suppose the same 3D point M and 3D line L are projected by P ′ to m′

r and l′,
respectively. The distance between m and m′

r is d′
p, and the distance between m and

l′ is d′
l. Note that d′

l < dl, but d′
p > dp.

M
X0

X1

X2

m

C

P2
P1

P0
S

I

x0x1x2

Fig. 3.5 Camera projection matrix and mirror surface points are recovered by minimiz-
ing reprojection errors computed from the cross-ratio constraint {M, X0; X1, X2} =
{m, x0; x1, x2}, where X0, X1, X2 are the correspondences of M under three different
pattern poses and m, x0, x1, x2 are their projections on image plane. Note that X0,
X1, X2 may not be visible by the camera.
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by P0, P1 and P2, respectively. Suppose M, X0, X1 and X2 are projected to the image

as m, x0, x1 and x2 respectively. We observe that the cross-ratios {M, X0; X1, X2}

and {m, x0; x1, x2} are identical, i.e.,

|X1M||X2X0|
|X1X0||X2M|

= |x1m||x2x0|
|x1x0||x2m|

. (3.17)

Let s be the distance between X2 and M (i.e., s = |X2M|), from (3.17)

s = |X2X1||X2X0||x1x0||x2m|
|X2X0||x1x0||x2m| − |X1X0||x2x0||x1m|

. (3.18)

Given the projection matrix, x0, x1, x2 and m, a surface point M can be recovered

as

M = X2 + s
−−−→X2X0

|X2X0|
, (3.19)

where −−−→X2X0 denotes the directed ray from X2 to X0.

We optimize the projection matrix by minimizing the reprojection errors, i.e.,

argmin
θ

n∑
i=1

(mi −m′
i)2, (3.20)

where θ = [fx, fy, u0, v0, rx, ry, rz, tx, ty, tz]T 2, mi ∈ R2 is the observation of Mi ∈

R3, and m′
i = P(θ)Mi. We initialize θ using the method proposed in Section 3.4,

and solve the optimization problem using the Levenberg-Marquardt method. Given

the estimated projection matrix, the mirror surface can be robustly reconstructed by

solving (3.17)-(3.19).

3.6 Evaluation

To demonstrate the effectiveness of our method, we evaluate it using both synthetic

and real data.
2We used angle-axis representation for rotation, i.e., [rx, ry, rz]T = αe, where α is the rotation

angle and e is the unit rotation axis.
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3.6.1 Synthetic Data
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Fig. 3.6 (a) An image of the mirror Stanford bunny. (b) RMS reprojection errors (com-
puted against ground truth image points). (c) RMS reconstruction errors (computed
against ground truth 3D surface points).

We employed a reflective Stanford bunny rendered by Balzer et al. [76] to generate

our synthetic data. The bunny has a dimension of 880× 680× 870 mm3, and 208, 573

surface points. The images have a resolution of 960 × 1280 pixels. Fig. 3.6(a) shows

the reflective appearance of the bunny. In their original data, the bunny is placed in

a cubic room, with each side of the room working as a reference plane. The reference

pattern has a dimension of 3048×3048 mm2. The center of the room is defined as the

world origin. A camera is placed in the room viewing the bunny. Since our method

requires reflection correspondences under three distinct poses of a reference plane, we

introduced two additional planes for each side of the room and obtained the reflection

correspondences through ray tracing.

To evaluate the performance of our method, we added Gaussian noise to the re-

flection correspondences with standard deviations ranging from 0 to 3.0 mm. We

initialized the projection matrix using the method described in Section 3.4. The

optimized projection matrix together with the 3D surface points were obtained by

minimizing reprojection errors computed based on our cross-ratio formulation. Our

cross-ratio based formulation can effectively improve the initialization results. An ex-

ample is given in Table 3.1. We evaluated: (1) linear solution by solving (3.12) in
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Section 3.4.3, denoted as L; (2) linear solution by solving (3.16) after enforcing the

constraints in Section 3.4.4, denoted as EL; (3) cross-ratio based non-linear solution

by solving (3.20) in Section 3.5, denoted as CR. The error in the rotation matrix R

is the angle of the rotation induced by RgtRT, where Rgt denotes the ground truth

rotation matrix. The error in the translation vector T is the angle (Tdeg) between

T and Tgt, where Tgt denotes the ground truth translation vector. In addition, we

obtain Tscale = ∥Tgt − T∥ to estimate the error in T. After applying the cross-ratio

based non-linear optimization, the accuracy of the camera projection matrix can be

effectively improved.

Table 3.1 Estimation error under noise lv σ = 2.0 [mm] on bunny. L: linear solution
of Section 3.4.3; EL: constrained linear solution with strategy in Section 3.4.4; CR:
estimation using cross-ratio formulation initialized with EL.

fu fv u0 v0 R[◦] Tdeg[◦] Tscale

L 1.39% 1.78% 1.76% 2.39% 0.61 0.55 0.98%
EL 0.94% 0.94% 0.07% 0.10% 0.12 0.11 0.28%
CR 0.11% 0.11% 0.18% 0.25% 0.08 0.07 0.13%

ground truth no noise noise lv: σ = 1.0 noise lv: σ = 2.0 noise lv: σ = 3.0

Fig. 3.7 Top row: reconstructed point clouds under different noise levels. Coordinates
are w.r.t world and colors are rendered w.r.t z coordinates. Note that the missing
regions are due to the lack of correspondences in the original data set. Bottom row:
surfaces generated using screened Poisson surface reconstruction method [80].

Fig. 3.6(b) and (c) depict the root mean square (RMS) reprojection errors and

reconstruction errors, respectively, under different noise levels. It can be seen that
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Table 3.2 Camera intrinsic and extrinsic estimation error under different noise level
σ for the Stanford bunny dataset. The ground truth for the intrinsic parameters are
fu = 1400, fv = 1400, and (u0, v0) = (639.5, 479.5).

fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦]Tdeg [◦] Tscale [mm]
σ = 0.5 0.22(0.02%) 0.22(0.02%) 0.41(0.06%)0.07(0.01%) 0.02 0.02 0.53(0.03%)
σ = 1.0 0.33(0.02%) 0.33(0.02%) 0.41(0.06%)0.05(0.01%) 0.02 0.02 0.52(0.03%)
σ = 1.5 0.50(0.04%) 0.51(0.04%) 0.56(0.09%)0.90(0.20%) 0.04 0.05 1.74(0.10%)
σ = 2.0 1.52(0.11%) 1.52(0.11%) 1.15(0.18%)1.22(0.25%) 0.08 0.07 2.42(0.13%)
σ = 2.5 4.36(0.31%) 4.36(0.31%) 2.11(0.32%)2.36(0.49%) 0.37 0.56 7.33(0.40%)
σ = 3.0 10.15(0.73%)10.11(0.73%)5.76(0.90%)3.08(0.64%) 0.85 0.73 13.29(0.73%)
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Fig. 3.8 Comparison with a fully calibrated method [12]. Upper left: ground truth.
Lower left: RMS reconstruction errors. Upper right ([12]) & lower right (ours): recon-
struction (blue) against ground truth (red) under σ = 2.0. Our uncalibrated approach
achieves comparable accuracy with that of the fully calibrated method [12].
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the reprojection errors and the reconstruction errors increase linearly with the noise

level. The magnitude of the reconstruction errors is relatively small compared to the

size of the object. Fig. 3.7 shows the reconstructed point clouds and surfaces. Table

3.2 shows a quantitative comparison of our estimated projection matrices w.r.t the

ground truth. Among all noise levels, the errors are below 1% for fu, fv, u0, v0 and

Tscale, and angular errors are below 1◦ for R and T.

Besides, we compared our method with state-of-the-art mirror surface reconstruc-

tion method [12] under smooth surface assumption and calibrated setup. Note that

[12] assumes the mirror surface is C2 continuous. In order to make fair comparison,

we perform the experiment on a sphere patch under the same setup with the bunny

dataset. Fig. 3.8 depicts the comparison between fully calibrated [12] and uncalibrated

(proposed) methods. The overall reconstruction accuracy is similar. While our result

is not as smooth as that from [12] due to our point-wise reconstruction, their result

shows a global reconstruction bias due to the B-spline parameterization for the surface

(see Fig. 3.8).

3.6.2 Real Data

Fig. 3.9 Top row: sauce boat and two spheres in real experiments. Bottom row: a
sweeping line is reflected by two spheres under three distinct positions of the LCD
monitor while the camera and mirror surfaces are stationary.

We evaluated our method on a sauce boat and two spheres respectively (see Fig. 3.9).

We captured images using a Canon EOS 40D digital camera with a 24-70 mm lens.
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A 19 inch LCD monitor was used as a reference plane and was placed at three dif-

ferent positions. For each position, we captured an image sequence of a thin bright

stripe sweeping across the screen in vertical direction and then in horizontal direction

[22, 31]. For each direction, we examined the intensity value sequence for each image

point, and established the reflection correspondence by identifying the image in which

the intensity attained a peak value. To improve the accuracy, quadratic approximation

was applied to the intensity profile in the neighborhood of the peak value.

After establishing reflection correspondences, we first estimated the relative poses

of the reference plane using the method in [59]. We then formed 3D lines from the

reflection correspondences on the reference plane under the two poses that are furthest

apart (e.g., P0 and P2 in Fig. 3.5). These 3D lines were used to obtain a preliminary

solution of projection matrix using the method in Section 3.4, which was then used to

initialize the nonlinear optimization described in Section 3.5.

(a) (b) (c) (d) (e) (f)

Fig. 3.10 (a)-(c): reconstructions of sauce boat. Results are obtained under (a) cali-
brated camera with calibrated plane poses (this result is treated as ground truth and
overlaid in (b) and (c) for comparison (red)); (b) uncalibrated camera with calibrated
plane poses (blue); (c) uncalibrated camera with uncalibrated plane poses (ours, blue).
Note the missing regions (in red rectangle) in the reconstructed point clouds are filled
by the mesh generation algorithm and should be ignored in comparing the surface
meshes. (d)-(f): reconstructions of two spheres.

To evaluate our method, we calibrated the camera and reference plane poses using

[81]. We used the calibration result to estimate the surface and treated it as the ground

truth, due to the absence of the ground-truth surface. This result was compared

against the result obtained using uncalibrated camera but calibrated plane poses, and



62 Single View Mirror Surface Reconstruction

our result using uncalibrated camera and uncalibrated plane poses. Fig. 3.10 shows

the reconstructed surfaces and Table 3.3 shows the numerical errors. We aligned

each estimated surface with the ground truth by a rigid body transformation before

computing the reconstruction error [82]. The RMS reconstruction errors are below

3 mm. fu and fv errors are below 2%. u0, v0 and Tscale errors are below 10%.

The angular errors are below 10◦ for R and below 3◦ for T. The errors in intrinsics

and extrinsics are larger than those in the synthetic experiments. This is reasonable

since accurate specular correspondences in real case are difficult to obtain due to

the large and complex distortion caused by the mirror surface and varying lighting

condition. The quality of specular correspondences is also a key factor for existing

mirror surface reconstruction methods. However, existing methods are designed under

certain assumptions (e.g., convex, Cn continuity, etc), and their setups are carefully

tailored or require special equipments. Besides, there is no public available dataset

that can serve as input for existing methods. As a result, it is challenging to make a

fair comparison with existing methods on real dataset. Therefore, we didn’t include

comparison with other existing methods on real data.

Table 3.3 Real experiments evaluation. B and S denote the results of sauce boat and
two spheres, respectively. The subscripts uc and uu stand for experiments under an
uncalibrated camera with calibrated plane poses and under an uncalibrated camera
with uncalibrated plane poses, respectively. The ground truth for the intrinsic param-
eters are fu = 5812.86, fv = 5812.82, and (u0, v0) = (1971.95, 1230.02). Srms stands
for the RMS reconstruction error.

fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦] Tdeg [◦] Tscale [mm] Srms [mm]
Buc 36.70(0.63%) 21.99(0.38%) 99.10(5.03%) 100.00(8.13%) 9.12 1.00 19.16(8.23%) 2.55
Buu 101.70(1.75%) 86.90(1.49%) 112.10(5.69%) 113.00(9.19%) 9.86 1.99 17.02(7.34%) 2.71
Suc 63.38(1.09%) 68.01(1.17%) 61.49(3.18%) 42.7(3.47%) 6.67 1.78 33.83(8.96%) 1.78
Suu 81.38(1.40%) 86.02(1.48%) 81.67(4.14%) 56.70(4.61%) 7.17 2.13 37.69(9.98%) 2.03
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3.7 Discussions and Conclusions

A novel method is introduced for mirror surface reconstruction. Our method works

under an uncalibrated setup and can recover the camera intrinsics and extrinsics,

along with the surface. We first proposed an analytical solution for camera projec-

tion matrix estimation, and then derived a cross-ratio based formulation to achieve a

robust estimation. Our cross-ratio based formulation does not encounter degeneracy.

However, degenerate cases (e.g., a planar mirror, a spherical mirror, etc) may occur

to the system due to the application of [59] to estimate relative poses of the reference

plane. Employing methods without degeneracy to estimate the relative poses will help

handle these cases.

The proposed method only needs reflection correspondences as input and removes

the restrictive assumptions of known motions, Cn continuity of the surface, and cali-

brated camera(s) that are being used by other existing methods. This greatly simplifies

the challenging problem of mirror surface recovery. We believe our work can provide

a meaningful insight towards solving this problem. In the future, we would like to ex-

tend the proposed method to recover complete surfaces and investigate inter-reflection

cases.





Chapter 4

Single View Diffuse Surface

Reconstruction

4.1 Introduction

3D reconstruction has always been a hot topic in the field of computer vision. Tremen-

dous efforts have been devoted to this problem in the past decades. In particular,

multi-view stereo (MVS) has been one of the most popular and successful approaches

in solving this problem, and numerous state-of-the-art MVS methods have been pro-

posed (e.g., [83]). Single view approach, on the other hand, has received much less

attention compared with MVS. Despite its potential, single view approach is relatively

less studied in the literature.

The working principle of most single view methods is based on observing multiple

light paths to the same scene point. This is often accomplished by introducing one

or more mirrors into the scene and observing the reflection(s) of the scene on the

mirror(s). Both planar and spherical mirrors have been employed by such methods.

Planar mirrors do not introduce any distortion in the reflected images, but provide

only a very limited field of view (FOV) (e.g., [84–86]). Spherical mirrors, on the other

hand, can provide a much wider FOV for 3D reconstruction (e.g., [87–90]). However,

distortions do exist in the reflected images, and these make the correspondence problem
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more difficult.

Most of the existing mirror based methods for single view 3D reconstruction require

a fully calibrated setup, in which the intrinsic parameters of both the camera and

mirrors, as well as the positions and orientations of the mirrors (relative to the camera)

are assumed to be known. This often requires tedious calibration that hinders the

application of these methods. In [16], Chen et al. showed that, with an internally

calibrated camera, it is possible to recover the position of a mirror sphere from its

image up to a scale determined by its radius. This allows a 3D reconstruction up to

an unknown scale under an unknown radius of the mirror sphere.

In this chapter, we revisit the problem studied in [16], which is single view 3D

reconstruction using an unknown mirror sphere, but with an uncalibrated camera.

We reconstruct the surface of a diffuse object using its reflection on the unknown

mirror sphere. During data acquisition, the camera and the object are fixed while

the mirror sphere is placed at one or more locations. It is well known that, under

perspective projection, the image of a sphere would be a conic [60]. Based on eigen

decomposition of the matrix representing the conic image and enforcing a repeated

eigenvalue constraint, we derive an analytical solution for recovering the focal length

of the camera given its principal point. Based on this analytical solution, we develop

two robust algorithms for estimating both the principal point and focal length of the

camera from multiple images as well as from just one image of the mirror sphere. With

the estimated camera intrinsic parameters, the position(s) of the sphere can be readily

retrieved from the eigen decomposition(s) as in [16], and a scaled 3D reconstruction

follows. The key contributions of this work include

• To the best of our knowledge, the first single view 3D reconstruction method

that works under an uncalibrated camera and an unknown mirror sphere (i.e.,

one with both its position and radius being unknown).

• An analytical solution for recovering the focal length of a camera from an image

of an unknown sphere given the principal point of the camera.
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• A robust method for estimating both the principal point and focal length of a

camera from multiple images of an unknown sphere placed at different positions.

• A novel method for estimating both the principal point and focal length of a

camera from just one image of an unknown sphere.

The rest of this chapter is organized as follows. Section 4.2 gives a brief literature

review. Section 4.3 provides the theoretical background of this work. The proposed

algorithms for estimating both the principal point and focal length of a camera are

introduced in Section 4.4, followed by a brief description of the reconstruction method

in Section 4.5. Experimental results are presented in Section 4.6. Section 4.7 discusses

and concludes this work.

4.2 Related Work

Imaging systems consisting of a camera observing one or more mirrors are referred

to as a catadioptric imaging system. They have many applications in both computer

graphics and comupter vision [15], including panoramic imaging [91], stereo vision [84,

86, 87, 92, 93], light field imaging [94], recognition [95], etc. Both planar mirrors and

spherical mirrors are commonly used in constructing a catadioptric imaging system.

A planar mirror provides a very cheap way of constructing a new viewpoint, and

is the simplest device for building a stereo vision system from a single camera (e.g.,

[85]). It is useful in applications like 3D reconstruction [96, 97] and light field imaging

[98]. In [99], Mitsumoto et al. described the single planar mirror geometric constraints

for 3D reconstruction. They showed that it is possible to recover a large coverage of

an object by moving the planar mirror or by placing multiple planar mirrors around

the object. In [86], Gluckman and Nayar used multiple planar mirrors to build a

complex imaging geometry. A planar mirror has the advantage of not introducing any

distortion in the reflected image. However, its small FOV greatly hinders its use in

practice.
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A spherical mirror can provide a much wider FOV than a planar mirror, and may

even reflect the entire surrounding environment. This makes it more commonly used

in catadioptric systems. Existing methods often assume an internally calibrated cam-

era, and consider only extrinsic calibration (e.g., [73, 77, 100, 101]). In [93], Nayar

presented the sphereo system for scene depth recovery. It consists of a calibrated cam-

era looking at two specular spheres, with both the radii and positions of the spheres

being known a priori. In [102], Powell et al. recovered light source positions from spec-

ular highlights observed on surfaces of spherical mirrors. In [89], Lanman et al. built

a catadioptric system using a perspective camera and many identical spherical mir-

rors. They recovered the parameters of the spherical mirrors by a tailored calibration

method. In [92], Kanbara et al. attached a color marker around the camera lens to

estimate the visual ray passing through a spherical mirror with a known radius. In

[103, 104], Wong et al. estimated the camera poses and light source directions from

a sphere with unknown radius and position using specular highlights observed on the

sphere and the silhouettes of the sphere. In [105] and [106], the corneas were ap-

proximated as spheres, and exploited for reconstructing a display from its reflections

on the corneas. In [16], Chen et al. introduced a method to reconstruct a 3D object

using a moving spherical mirror. They showed that without knowing the radius of the

spherical mirror, a 3D surface can be recovered up to an unknown scale. Note that all

the aforementioned methods assume an internally calibrated camera and/or a known

sphere.

Other than using mirrors to build a catadioptric system, there is also much effort

aiming at recovering the mirror surface itself from reflections observed on its surface

(e.g., [13, 14, 49]). These, however, are out of the scope of this chapter. Besides,

diffuse spheres have also been explored in camera calibration (e.g., [107–111]). These

methods normally require multiple images and multiple spheres.



4.3 Theoretical Background 69

. .

.

O

C

Optical axis

S rs

Fig. 4.1 A perspective camera located at O observes a sphere S of radius rs. The image
of the sphere S is a conic C, which can be represented by a a 3× 3 symmetric matrix
C. O and C define a right circular cone tangent to S. The axis of this cone pierces
the center of S. By construction, this axis is the Z-axis of the world coordinate, and
the distance between O and the center of S is d.

4.3 Theoretical Background

Without loss of generality, consider a pinhole camera with its optical centre locates at

the origin O of a world coordinate system, and a sphere of radius rs with its centre

locates at a distance d from O along the positive Z-axis of the world coordinate system

(see Fig. 4.1). The projection matrix of this camera can be written as P = K[R 0],

where K is the 3 × 3 camera calibration matrix composed of the camera intrinsic

parameters, and R and 0 are the 3 × 3 rotation matrix and the translation vector

[0 0 0]T, respectively, which define the rigid body transformation of the camera with

respect to the world coordinate system. The sphere will project onto the image as a

conic. This conic can be represented by a 3 × 3 symmetric matrix C such that each

point x (in homogeneous pixel coordinates) lying on this conic satisfies xTCx = 0.

Such a conic can be easily obtained from the image by applying a robust conic fitting

algorithm [60].
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By removing the effect of K, the conic C will transform into

Ĉ = KTCK (4.1)

which is a conic expressed in image plane coordinates. It has been shown in [104] that,

by eign decomposition, Ĉ can be factorized into

Ĉ = RDRT, (4.2)

where R is the rotation matrix of the camera, and D = diag(λ1, λ1, λ2) is a diagonal

matrix composed of the eigenvalues of Ĉ. Note that D represents a circle of radius

rc =
√
−λ1

λ2
centres at the image plane origin. It corresponds to the image of the sphere

when the camera has its optical axis aligned with the Z-axis of the world coordinate

system (i.e., when R = I). The sphere centre, expressed in camera coordinates, can

be recovered as dr3, where r3 is the third column of R and d = rs

√
1+r2

c

rc
.

With a calibrated camera and a sphere with known radius, the position of the

sphere can be uniquely recovered from its image. The scene can be reconstructed

from its reflections on the sphere placed at two distinct positions. When the radius

of the sphere is not known, the position of the sphere can still be recovered up to an

unknown scale determined by this unknown radius, and this results in a reconstruction

up to the same unknown scale.

4.4 Estimating Camera Intrinsic Parameters

In this section, we first derive an analytical solution for recovering the focal length

of a camera from an image of a sphere under a known principal point of the camera.

Based on this analytical solution, we introduce two robust algorithms for estimating

both the principal point and focal length of the camera from multiple images of the

sphere as well as from just one image of the sphere.
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4.4.1 Focal Length

Assume the camera has unit aspect ratio, and let f and (u0, v0) be its focal length and

principal point respectively. The camera calibration matrix K can be factorized into

K = TF, (4.3)

where

T =


1 0 u0

0 1 v0

0 0 1

 , and F =


f 0 0

0 f 0

0 0 1

 . (4.4)

Substituting (4.3) into (4.1) gives

Ĉ = FTTTCTF. (4.5)

Now suppose the principal point of the camera is known (e.g., by assuming the

principal point is at the image centre). The effect of T can be removed by translating

all the points by (−u0,−v0). After the translation, the conic C will transform into

C̄ = TTCT (4.6)

which is a conic having the same shape as C (see Fig. 4.2).

Substituting (4.6) into (4.5) gives

Ĉ = FTC̄F. (4.7)

Now let

Ĉ =


ω̂11 ω̂12 ω̂13

ω̂21 ω̂22 ω̂23

ω̂31 ω̂32 ω̂33

 and C̄ =


ω̄11 ω̄12 ω̄13

ω̄21 ω̄22 ω̄23

ω̄31 ω̄32 ω̄33

 ,
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(0, 0) 

+ 
(u0, v0) 

x 

y 

(-u0, -v0) 

+ 
(0, 0) 

x 

y 
(a) (b)

Fig. 4.2 (a) C: before removing the effect of T. (b) C̄: after removing the effect of T.

and from (4.7) we have


ω̂11 ω̂12 ω̂13

ω̂21 ω̂22 ω̂23

ω̂31 ω̂32 ω̂33

 =


ω̄11f

2 ω̄12f
2 ω̄13f

ω̄21f
2 ω̄22f

2 ω̄23f

ω̄31f ω̄32f ω̄33

 (4.8)

Recall that Ĉ can be factorized into Ĉ = RDRT, where D = diag(λ1, λ1, λ2) is

a diagonal matrix composed of the eigenvalues of Ĉ. The eigenvalues of Ĉ can be

obtained by solving the characteristic equation

det(Ĉ− λI) = 0. (4.9)

Note that (4.9) gives a cubic polynomial

λ3 − βλ2 + γλ + δ = 0, (4.10)
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where
β =ω̂11 + ω̂22 + ω̂33

γ =ω̂11ω̂22 + ω̂11ω̂33 + ω̂22ω̂33 − ω̂2
12 − ω̂2

13 − ω̂2
23

δ =ω̂11ω̂
2
23 + ω̂22ω̂

2
13 + ω̂33ω̂

2
12 − ω̂11ω̂22ω̂33 − 2ω̂12ω̂13ω̂23

(4.11)

Since Ĉ has at least two identical eigenvalues, (4.10) must have at least two equal

roots. Hence we have [112]

µ2 − 4ν3 = 0, (4.12)

where

µ =β2 − 3γ

=1
2[(ω̂11 − ω̂22)2 + (ω̂11 − ω̂33)2 + (ω̂22 − ω̂33)2] + 3(ω̂2

12 + ω̂2
13 + ω̂2

23)

ν =2β2 − 9βγ − 27δ

=18(ω̂11ω̂22ω̂33 + 3ω̂12ω̂13ω̂23) + 2(ω̂2
11 + ω̂2

22 + ω̂2
33)

+ 9(ω̂11 + ω̂22 + ω̂33)(ω̂2
12 + ω̂2

13 + ω̂2
23)− 3(ω̂11 + ω̂22)(ω̂11 + ω̂33)(ω̂22 + ω̂33)

− 27(ω̂11ω̂
2
23 + ω̂22ω̂

2
13 + ω̂33ω̂

2
12)

(4.13)

Given the conic C and the principal point (u0, v0), the only unknown in (4.12) is

f . Solving (4.12) leads to 12 solutions. We observe that among these 12 solutions, 8 of

them are zeros, and the remaining 4 have an identical absolute value, which gives the

solution of f . Under noisy data, the solutions to (4.12) might be complex numbers.

The 8 zero solutions become pure imaginary numbers, and the remaining 4 become two

pairs of conjugate complex numbers, with opposite signs for their real and imaginary

parts (i.e., a + bi, a− bi, −a + bi, −a− bi). The absolute value of their real parts gives

us an estimate of the focal length, i.e., f = ∥a∥.

4.4.2 Principal Point

As discussed above, a unique focal length f can be obtained by solving (4.12) when

the principal point of the camera is known or assumed to locate at the image centre.
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In practice, however, the principal point is often not known a priori. Besides, due to

manufacture reasons, the principal point usually does not locate exactly at the image

centre, but somewhere close to it.

We notice that given the ground truth principal point (u0, v0), the focal length

estimated by (4.12) should be identical to the ground truth focal length fgt. On the

other hand, if we solve (4.12) using points close to the ground truth principal point as

the principal point, the estimated focal length will become a complex number. The

real part of this complex number is close to fgt, and its imaginary part is a relatively

small value to compensate the errors.

Another observation is that, given the conic images of the mirror sphere at two

distinct positions, we can obtain two estimates of the focal length, denoted as f1 and

f2 respectively, using the same assumed principal point. f1 = f2 = fgt holds when the

assumed principal point equals the ground truth principal point.

Based on the above observations, we propose to estimate the principal point by

minimizing the difference between the focal lengths estimated from the conic images of

the mirror sphere at two distinct positions, subject to the principal point lying within

a small window centred at the image centre. The difference between the estimated

focal lengths is measured as the sum of the magnitudes of the differences in their real

and imaginary parts respectively

error = ||real(f1)| − |real(f2)||+ ||imag(f1)| − |imag(f2)|| . (4.14)

The proposed approach is summarized in Algorithm 1.

The above algorithm requires two conic images of the mirror sphere. When only

one image of the sphere is available, one simple strategy is to assume the principal

point is at the image centre and then estimate f by solving (4.12). This, however,

often does not give an optimal solution as the principal point, as mentioned before,

usually does not locate exactly at the image centre. Based on the observation that the

error in the estimated focal length is highly correlated with the error in the position
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Algorithm 1: Estimation of the principal point and focal length from two conic
images of a mirror sphere.

Input : Image centre (uc, vc), conic images C1, C2
Output: Principal point (u0, v0), focal length f
Initialization: Set offsets along u, v directions as w = const1, h = const2; set
step size as s = const3; set error as errormin = large const;
for up ← uc − w to uc + w step s do

for vp ← vc − h to vc + h step s do
Construct T using (4.4) with (up, vp);
Compute C̄1, C̄2 using (4.6);
Construct Ĉ1, Ĉ2 from C̄1, C̄2 using (4.7);
Solve (4.12) for Ĉ1, Ĉ2 to obtain f1, f2;
Compute current error, errorcur, by (4.14);
if errorcur < errormin then

u0 ← up

v0 ← vp

f ← |real(f1)|+|real(f2)|
2 errormin ← errorcur

end
end

end

of the principal point, we propose a novel approach for estimating both the principal

point and focal length of the camera from just one image of the mirror sphere. We first

sample points evenly within a small window centred at the image centre, and estimate

a focal length f using each sample point as the principal point. We then calculate the

mean of these estimated values and this gives us a final estimate of the focal length.

Next, we identify the sample point that leads to an estimated focal length closest to

the mean value as the principal point. Fig. 4.3 gives an example of estimating the

focal length using points sampled around the image centre as the principal point. We

can see that when the sampled principal point is closer to the ground truth principal

point, the estimated f will be closer to the ground truth focal length fgt.
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(500, 400)

1000.0 969.91029.9 939.81059.8

969.9 939.51002.1 908.71030.4

939.8 909.2970.5 878.11009.3

1029.9 1002.31059.6 970.51089.1

1059.8 1030.41074.4 1010.11118.4

(420, 320) (580, 320)

(580, 480)(420, 400)

Fig. 4.3 An example of camera intrinsics estimation from the conic of a single sphere.
The ground truth intrinsic parameters are f = 1000, (u0, v0) = (500, 400). Given the
conic of the sphere, we estimated the focal length by setting different image points as
the principal point. The coordinates (blue) stand for the pixel coordinates, and the
number (red) close to a pixel stands for the estimated f by setting that pixel as the
principal point. The mean of the estimated values is fm = 998.1. (500, 400) is the
sample point that leads that to an estimated f closest to fm.

4.5 Shape Recovery

After estimating the principal point (u0, v0) and focal length f of the camera using the

methods described in the Section 4.4, we can obtain the camera calibration matrix K

using (4.3) and (4.4). We use K to transform the conic image C into Ĉ using (4.1),

and factorize it into Ĉ = RDRT by eigen decomposition. The centre of the sphere,

expressed in camera coordinates, can be recovered as dr3 where r3 denotes the third

column of R resulting from the eigen decomposition, and d = rs

√
1+r2

c

rc
denotes the

distance of the sphere centre from the camera centre. With the radius rs of the sphere

being unknown, we can simply set rs to 1 and the resulting reconstruction will then

be scaled by 1
rs

.

Consider a scene point P, and let q1 and q2 be its reflections observed on the surface

of a mirror sphere placed at S1 and S2, respectively (see Fig. 4.4). To reconstruct P (in

camera coordinates), we first construct the visual rays V(q1) and V(q2) for q1 and q2,
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respectively, using the formula V(q) = K−1q. We solve for the point of intersection Q1

between V(q1) and the sphere at S1, and the point of intersection Q2 between V(q2)

and the sphere at S2, respectively. Based on the law of reflection, the incident rays at

Q1 and Q2 can be constructed, and P can be recovered by triangulating these incident

rays. In the case where P can be directly observed by the camera, only one reflection

of P on the surface of a mirror sphere is sufficient to recover P by triangulating the

visual ray of the direct observation with the incident ray of the reflection observed.

O 
P 

S1 

S2 

Q2 

Q1 

q1 
q2 
p 

Fig. 4.4 A perspective camera located at O observes the reflections of a scene point
P at Q1 and Q2 on the surface of a mirror sphere placed at S1 and S2, respectively.
P can be reconstructed by triangulating: (a) Q1P with Q2P, if P is not visible; (b)
OP with Q1P (or Q2P), if P is visible.

4.6 Experimental Results

We evaluate our proposed methods on both synthetic and real data. We compare

our uncalibrated approach against the method in [16] which assumes an internally

calibration camera.
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4.6.1 Synthetic Data

We used the same synthetic data set as in [16] to evaluate our approach and compare

against their method. A synthetic perspective camera was employed to observe a

mirror sphere with radius 1.5mm placed at two distinct positions. Four 3D points

P{1,2,3,4} were reflected at Q{11,12,13,14} on the surface of the sphere when it was placed

at S1, and at Q{21,22,23,24} on the surface of the sphere when it was placed at S2. P1P2,

P1P3 and P1P4 were mutually orthogonal to each other, and they were of the same

lengths (5 mm).

We applied SVD to fit conics to the edges extracted from the images of the sphere

[60].To evaluate the robustness of our approach, we added Gaussian noise to the pixel

coordinates of the edges with noise level ranging from 0 to 3.0 pixels. With conics

fitted to two images of the mirror sphere, the camera calibration matrix K can be

estimated using our method described in Section 4.4.

With an unknown radius of the sphere, we can only reconstruct the scene up

to an unknown scale. Hence, it is more meaningful to compare the reconstruction

error in terms of length ratios and angles rather than absolute distance errors. Let

l1, l2, and l3 denote ∥P1P2∥, ∥P1P3∥ and ∥P1P4∥, respectively. We measured the

errors in the length ratios l1/l2, l2/l3 and l3/l1, respectively, as their deviations from

1. Similarly, let α, β and θ denote ∠P2P1P3, ∠P3P1P4 and ∠P4P1P2, respectively.

The errors in α, β and θ were measured as their deviations from 90◦. We performed

500 independent trials and our reconstruction results as well as the comparison with

[16] are presented in Fig. 4.5. Generally, the errors increase linearly with the noise

level. Algorithm 1 performed slightly better than the method using only a single

image of the sphere, hence we used the intrinsics estimated by Algorithm 1 for 3D

reconstruction in our experiment. Our length ratio errors and angle errors are quite

close to that of [16]. Fig. 4.6 shows our reconstruction under the noise level σ = 2.0.

The results demonstrate the accuracy and robustness of our proposed approach.
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Fig. 4.5 Synthetic experiment results under different noise levels. Ground truth value:
f = 1200, u0 = 495, v0 = 395. (a) Reconstructed principal point (u0, v0) errors by
Algorithm 1 [Alg.1], and by the method using only a single image of the sphere [Sgl].
(b) Focal length errors; (c) Length ratio errors compared with [16]; (d) Angle errors
of the reconstructed rays compared with [16].

Fig. 4.6 Reconstruction under noise level σ = 2.0. Blue points: ground truth; Red
points: reconstruction.



80 Single View Diffuse Surface Reconstruction

4.6.2 Real Data

To evaluate our approach on real data set, we performed an experiment on a rectan-

gular box with a dimension of 6 cm × 6 cm × 8 cm. In the experiment, the box was

reflected by a mirror sphere of radius 40 mm placed at four different positions. The

reflections on the sphere surface were captured using a Canon EOS 40D equipped

with a 24-70 mm lens. Fig. 4.7 shows our experiment setup.

(a) (b) (c)
Fig. 4.7 Real experiment setup (a) and reflections on a sphere at four distinct positions
(b-c). Four corners of a box are reconstructed using the reflections in (b) and the other
four corners are reconstructed using the reflections in (c). The correspondences are
marked with red dots in the images. Note that the box is not visible by the camera.

After fitting conics to the images of the sphere using SVD, we first estimated

the principal point and focal length of the camera using the methods introduced in

Section 4.4. Table 4.1 shows our estimation result. It can be seen that the estimated

camera intrinsic parameters are very close to those obtained by camera calibration

using a calibration pattern [81]. We used the intrinsics estimated by Algorithm 1

to reconstruct the corners of the box, and measured 24 angles and 12 length ratios

around them. We compared these measurements against the ground truth values (90◦

for angle and 1.25 for length ratio). We also compared our results with that of [16],

which works under an internally calibrated camera. The RMS errors are given in

Table 4.2. Fig. 4.8 shows the reconstructed 3D corner points of our method and that

of [16]. The recovered surfaces are presented in Fig. 4.9. Our approach achieved a
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high accuracy which is very close to that using a calibrated camera.

Table 4.1 Estimation of camera intrinsic parameters. [Centre]: results by setting
image centre as the principal point; [Alg.1]: results by Algorithm 1; [Sgl]: results by
the method using only a single image of the sphere.

f u0 v0
Calibration [81] 4435.36 1963.0 1277.0
Estimation [Centre] 4117.49 1944.0 1296.0
Estimation [Alg.1] 4386.06 1955.0 1285.0
Estimation [Sgl] 4301.02 1980.0 1290.0
Error [Centre] 7.17% 0.97% 1.49%
Error [Alg.1] 1.11% 0.41% 0.63%
Error [Sgl] 3.06% 0.87% 1.02%

Table 4.2 RMS angle error and length ratio error of the recovered box. The ground
truth angle and length ratio are 90◦ and 1.25, respectively.

angle length ratio
Calibrated [16] 1.08 0.03
Ours 1.05 0.03

4.7 Discussions and Conclusions

This chapter addresses the problem of single view 3D reconstruction under an uncal-

ibrated camera and an unknown mirror sphere. We derive an analytical solution to

solve the camera focal length given the principal point by enforcing a repeated eigen-

value constraint for the conic image of the mirror sphere. Based on this analytical

solution, we introduce a robust algorithm to estimate both the principal point and

focal length of the camera by minimizing the difference between focal lengths esti-

mated from multiple images of the sphere. Besides, we also present a novel approach

to estimate both the principal point and focal length of the camera in the case of just

one image of the sphere. With the estimated camera intrinsic parameters, we can

recover the sphere position(s) by eigen decomposition, and reconstruct the scene up

to an unknown scale determined by the radius of the sphere. Experimental results on
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Fig. 4.8 Reconstructed corners of a box. Blue: using a calibrated camera [16]; Red:
using an uncalibrated camera (ours).

Fig. 4.9 Recovered surfaces. Left: using a calibrated camera [16]; Right: using an
uncalibrated camera (ours).
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both synthetic and real data demonstrate the feasibility and accuracy of our proposed

approach. One limitation of our approach is the difficulty in establishing dense and

high quality reflection correspondences due to the distortions exhibited in the reflected

images. As a result, the reconstructed point cloud is sparse. Note that this is in fact

the limitation of all 3D reconstruction methods based on mirror spheres. In the future,

we would like to extend our work to achieve dense 3D reconstruction.





Chapter 5

Learning Semantic Correspondence

5.1 Introduction

Our goal in this chapter is to establish semantic correspondences across images that

contain different instances of the same object or scene category. Such images fea-

ture much larger changes in appearance and spatial layout than pictures of the same

scene used in stereo vision, which we take here to include broadly not only classical

(narrow-baseline) stereo fusion (e.g., [113, 114]), but also optical flow computation

(e.g., [115–117]) and wide-baseline matching (e.g., [118, 119]). Due to such a large de-

gree of variations, the problem of semantic correspondence remains very challenging.

Most previous approaches to semantic correspondence [119–124] focus on combining an

effective spatial regularizer with hand-crafted features such as SIFT [18], DAISY [125]

or HOG [19]. With the remarkable successes of deep learning approaches in visual

recognition, several learning-based methods have also been proposed for both stereo

vision [126–129] and semantic correspondence [130–132]. Yet, none of these methods

exploits geometric consistency constraint that has proven to be a key factor to the suc-

cess of their hand-crafted counterparts. Geometric regularization, if any, often occurs

during post-processing but not during learning (e.g., [128, 129]).

In this chapter we propose a convolutional neural network (CNN) architecture,

called SCNet, for learning geometrically plausible semantic correspondence (Fig. 5.1).
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Fig. 5.1 Learning semantic correspondence. We propose a convolutional neural net-
work, SCNet, to learn semantic correspondence using both appearance and geometry.
This allows us to handle a large degree of intra-class and scene variations. This figure
shows a pair of input images (top) and a warped image (bottom) using its semantic
correspondence by our method.

Following the proposal flow approach to semantic correspondence of Ham et al. [133],

we use object proposals [134–136] as matching primitives, and explicitly incorporate

the geometric consistency of these proposals in our loss function. Unlike [133] with

its hand-crafted features, however, we train our system in an end-to-end manner us-

ing image pairs extracted from the PASCAL VOC 2007 keypoint dataset [137]. A

comparative evaluation on several standard benchmarks demonstrates that the pro-

posed approach substantially outperforms both recent deep architectures and previous

methods based on hand-crafted features.

Our main contributions can be summarized as follows:

• We introduce a simple and efficient model for learning to match regions using

both appearance and geometry.

• We propose a convolutional neural network, SCNet, to learn semantic correspon-

dence with region proposals.

• We achieve state-of-the-art results on several benchmarks, clearly demonstrating
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the advantage of learning both appearance and geometric terms.

5.2 Related Work

Here we briefly describe representative approaches related to semantic correspondence.

Semantic correspondence. SIFT Flow [123] extends classical optical flow to estab-

lish correspondences across similar but different scenes. It uses dense SIFT descriptors

to capture semantic information beyond naive color values, and leverages a hierarchi-

cal optimization technique in a coarse-to-fine pipeline for efficiency. Kim et al. [122]

and Hur et al. [121] proposed more efficient generalizations of SIFT Flow. Instead

of using SIFT features, Yang et al. [119] used DAISY [125] for an efficient descriptor

extraction. Inspired by an exemplar-LDA approach [138], Bristow et al. [120] used

whitened SIFT descriptors, making semantic correspondence robust to background

clutter. Recently, Ham et al. [133] introduced proposal flow that uses object proposals

as matching elements for semantic correspondence that are robust to scale and clutter.

This work shows that the HOG descriptor gives better matching performance than

deep learning features [139, 140]. Taniai et al. [124] also used HOG descriptors, and

showed that jointly performing cosegmentation and establishing dense correspondence

are helpful in both tasks. Despite differences in feature descriptors and optimization

schemes, these semantic correspondence approaches use a spatial regularizer to ensure

flow smoothness on top of hand-crafted or pre-trained features.

Deep learning for correspondence. Recently, CNNs have been applied to classi-

cal dense correspondence problems such as optical flow and stereo matching to learn

feature descriptors [128, 129, 141] or similarity functions [127, 128, 141]. FlowNet [126]

uses an end-to-end scheme to learn optical flow with a synthetic dataset, and sev-

eral recent approaches also use supervision from reconstructed 3D scenes and stereo

pairs [127–129, 141] to learn correspondence. MC-CNN [128] and its efficient exten-

sion [129] train CNN models to predict how well two image patches match and use this
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information to compute the stereo matching cost. DeepCompare [141] learns a simi-

larity function for patches directly from images of a 3D scene, which allows for various

types of geometric and photometric transformations (e.g., rotation and illumination

changes). These approaches are inherently limited to matching images of the same

physical object/scene. In contrast, Long et al. [142] used CNN features pre-trained

on the ImageNet classification tasks (due to a lack of available datasets for learning

semantic correspondence) for semantic correspondence estimation and achieved per-

formance comparable to SIFT flow. To overcome the difficulty in obtaining ground

truth for semantic correspondence, Zhou et al. [132] leveraged 3D models, and used

flow consistency between 3D models and 2D images as a supervisory signal to train a

CNN. Another approach to generating ground truth is to directly augment the data

by densifying sparse keypoint annotations using warping [133, 143]. The universal cor-

respondence network (UCN) of Choy et al. [130] learns semantic correspondence using

an architecture similar to [129], but adds a convolutional spatial transformer network

for improved robustness to rotation and scale changes. Kim et al. [131] introduced a

convolutional descriptor using self-similarity, called fully convolutional self-similarity

(FCSS), and combined the learned semantic descriptors with the proposal flow [133]

framework. These approaches to learning semantic correspondence [130, 132] or se-

mantic descriptors [131] typically perform better than traditional hand-crafted ones.

Unlike our method, however, they do not incorporate geometric consistency between

regions or object parts in the learning process.

5.3 Our Approach

We consider the problem of learning to match regions with arbitrary positions and sizes

in pairs of images. This setting is general enough to cover all cases of region sampling

used in semantic correspondence, including sampling a dense set of regular local regions

as in typical dense correspondence [120, 122, 123, 144] as well as employing multi-scale

object proposals [134–136, 145, 146]. In this work, following proposal flow [133], we
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focus on establishing correspondences between object proposal boxes.

5.3.1 Model

Our basic model for matching is based on the probabilistic Hough matching (PHM)

approach [133, 147]. Given a potential match m between two regions, and the sup-

porting data D (a set of potential matches), the PHM model can be written as

P (m|D) =
∑

x

P (m|x, D)P (x|D)

= Pa(m)
∑

x

Pg(m|x)P (x|D), (5.1)

where x is the offset (e.g., position and scale change) between two regions r and s in

a potential match m = [r, s] in D. Pa(m) and Pg(m|x) are the probabilities that the

match is correct based on appearance only, and based on geometry computed using the

offset x only, respectively.1 PHM computes a matching score by replacing geometry

prior P (x|D) with the Hough voting h(x|D) [147]:

h(x|D) =
∑

m′∈D

Pa(m′)Pg(m′|x). (5.2)

This turns out to be an effective spatial matching model that combines appearance

similarity with global geometric consistency measured by letting all matches vote on

the potential offset x [133, 147].

In our learning framework, we consider similarities rather than probabilities, and

rewrite the PHM score for the match m as

z(m, w) = f(m, w)
∑

x

g(m, x)
∑

m′∈D

f(m′, w)g(m′, x)

= f(m, w)
∑

m′∈D

[
∑

x

g(m, x)g(m′, x)]f(m′, w),
(5.3)

where f(m, w) is a parameterized appearance similarity function between the two

1We suppose that appearance matching is independent of geometry matching and the offset.



90 Learning Semantic Correspondence

regions in the potential match m, x is as before an offset variable (position plus scale),

and g(m, x) measures the geometric compatibility between the match m and the offset

x.

Now assuming that we have a total number of n potential matches, and identifying

matches with their indices, we can rewrite this score as

z(m, w) = f(m, w)
∑
m′

Kmm′f(m′, w), (5.4)

where Kmm′ = ∑
x g(m, x)g(m′, x), and the n × n matrix K is the kernel matrix

associated with the feature vector φ(m) = [g(m, x1), . . . , g(m, xs)]T , where x1 to xs

form the finite set of values that the offset variable x runs over: indeed Kmm′ =

φ(m) · φ(m′).2

Given training pairs of images with associated true and false matches, we can learn

our similarity function by minimizing with respect to w

E(w) =
n∑

m=1
l[ym, z(m, w)] + λΩ(w), (5.5)

where l is a loss function, ym is the the ground-truth label (either 1 [true] or 0 [false])

for the match m, and Ω is a regularizer (e.g., Ω(w) = ||w||2). We use the hinge loss

and L2 regularizer in this work. Finally, at test time, we associate any region r with

the region s maximizing z([r, s], w∗), where w∗ is the set of learned parameters.

5.3.2 Similarity Function and Geometry Kernel

There are many possible choices for the function f that computes the appearance

similarity of the two regions r and s making up a match m. Here we assume a

trainable embedding function c (as will be shown later, c will be the output of a CNN

in our case) that outputs a L2 normalized feature vector. For the appearance similarity

2Putting it all together in an n-vector of scores, this can also be rewritten as z(w) = f(w)⊙Kf(w),
where z(w) = (z(1, w), . . . , z(n, w))T , “⊙” stands for the elementwise product between vectors, and
f(w) = (f(1, w), . . . , f(n, w))T .
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between two regions r and s, we then use a rectified cosine similarity:

f(m, w) = max(0, c(r, w) · c(s, w)), (5.6)

that sets all negative similarity values to zero, thus making the similarity function

sparser as well as insensitive to negative matches during training, with the additional

benefit of giving nonnegative weights in (5.3).

Our geometry kernel Kmm′ records the fact that two matches (roughly) correspond

to the same offset: Concretely, we discretize the set of all possible offsets into bins.

Let us denote by h the function mapping a match m onto the corresponding bin x, we

now define g by

g(m, x) =


1, if h(m) = x

0, otherwise.

(5.7)

Thus, the kernel Kmm′ simply measures whether two matches share the same offset

bin or not:

Kmm′ =


1, if h(m) = h(m′)

0, otherwise.

(5.8)

In practice, x runs over a grid of predefined offset values, and h(m) assigns match m to

the nearest offset point. Our kernel is sparse, which greatly simplifies the computation

of the score function in (5.4): Indeed, let Bx denote the set of matches associated with

the bin x, the score function z reduces to

z(m, w) = f(m, w)
∑

m′∈Bh(m)

f(m′, w). (5.9)

This trainable form of the PHM model from [133, 147] can be used with (5.5).

Note that since our simple geometry kernel is only dependent on matches’ offsets,

we obtain the same geometry term value of ∑m′∈Bh(m)
f(m′, w) for any match m that

falls into the same bin h(m). This allows us to compute this geometry term value only

once for each non-empty bin x and then share it for multiple matches in the same bin.
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Fig. 5.2 The SCNet architectures. Three variants are proposed: SCNet-AG, SCNet-A,
and SCNet-AG+. The basic architecture, SCNet-AG, is drawn in solid lines. Colored
boxes represent layers with learning parameters and the boxes with the same color
share the same parameters. “×K” denotes the voting layer for geometric scoring.
A simplified variant, SCNet-A, learns appearance information only by making the
voting layer an identity function. An extended variant, SCNet-AG+, contains an
additional stream drawn in dashed lines. SCNet-AG learns a single embedding c for
both appearance and geometry, whereas SCNet-AG+ learns an additional and separate
embedding cg for geometry.

This sharing makes computing z several times faster in practice.3

5.3.3 Gradient-based Learning

The feature embedding function c(m, w) in the model above can be implemented by

any differentiable architecture, for example a CNN-based one, and the score function

z can be learned using stochastic gradient descent. Let us now consider the problem

of minimizing the objective function E(w) defined by (5.5).4 This requires computing

the gradient with respect to w of the function z:

∇z(m, w) = [
∑

m′∈D

Kmm′f(m′, w)]∇f(m, w) + f(m, w)
∑

m′∈D

Kmm′∇f(m′, w).

3If the geometry kernel is dependent on something other than offsets, e.g., matches’ absolute
position or their neighborhood structure, this sharing is not possible.

4We take Ω(w) = 0 for simplicity in this section, but tackling a nonzero regularizer is easy.
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Denoting by n the size of D, this involves n evaluations of both f and ∇f . Computing

the full gradient of E thus requires at most n2 evaluations of both f and ∇f , which be-

comes computationally intractable when n is large enough. The score function of (5.9)

with the sparse kernel of (5.8), however, greatly reduces the gradient computation:

∇z(m, w) = [
∑

m′∈Bh(m)

f(m′, w)]∇f(m, w) + f(m, w)
∑

m′∈Bh(m)

∇f(m′, w).

Note that computing the gradient for match m involves only a small set of matches

falling into the same offset bin h(m). More details can be found in Appendix C.

5.4 SCNet Architecture

Among many possible architectures implementing the proposed model, we propose

using a convolutional neural network (CNN), dubbed SCNet, that efficiently processes

regions and learns our matching model. Three variants, SCNet-AG, SCNet-A, SCNet-

AG+, are illustrated in Fig. 5.2.

In each case, SCNet takes as input two images IA and IB, and maps them onto

feature maps FA and FB by CNN layers. Given region proposals (r1, . . . , rp) and

(s1, . . . , sp) for the two images, parallel ROI pooling layers [148, 149] extract feature

maps of the same size for each proposal. This is an efficient architecture that shares

convolutional layers over all region proposals.

SCNet-AG. The proposal features are fed into a fully-connected layer, mapped

onto feature embedding vectors, and normalized into unit feature vectors c(ri, w) and

c(sj, w), associated with the regions ri and sj of IA and IB, respectively. The value of

f(m, w) for the match m associated with regions ri and sj is computed as the rectified

dot product of c(ri) and c(sj) (see (5.6)), which defines the appearance similarity

f(m, w) for match m. Geometric consistency is enforced with the kernel described in

Sec. 5.3.2, using a voting layer, denoted as “×K”, that computes score z(m, w) from

the appearance similarity and geometric consensus of proposals. Finally, matching
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is performed by identifying the maximal z(m, w) scores, using both appearance and

geometric similarities.

SCNet-A. We also evaluate a similar architecture without the geometry term. This

architecture drops the voting layer (denoted by ×K in Fig. 5.2) in SCNet-AG, directly

using f(m, w) as a score function. This is similar to the universal correspondence

network (UCN) [130]. The main differences are the use of object proposals and the

use of a different loss function.

SCNet-AG+. Unlike SCNet-AG, which learns a single embedding c for both ap-

pearance and geometry, SCNet-AG+ learns an additional and separate embedding cg

for geometry that is implemented by an additional stream in the SCNet architecture

(dashed lines in Fig. 5.2). This corresponds to a variant of (5.9), as follows:

z+(m, w) = f(m, w)
∑

m′∈Bh(m)

fg(m′, w), (5.10)

where fg is the rectified cosine similarity computed by cg. Compared to the original

score function, this variant allows the geometry term to learn a separate embedding

function for geometric scoring. This may be beneficial particularly when a match’s

contribution to the geometric score needs to be different from the appearance score.

For example, a match of rigid object parts (wheels of cars) may contribute more to the

geometric score than that of deformable object parts (legs of horses). The separate

similarity function fg allows more flexibility in learning the geometric term.

Implementation details. We use the VGG16 [150] model that consists of a set

of convolutional layers with 3 × 3 filters, a ReLU layer and a pooling layer.5 We

find that taking the first 4 convolutional layers is a good trade-off for our semantic

feature extraction purpose without loosing localization accuracy. These layers output

features with 512 channels. For example, if the net takes input of 224×224×3 images,
5Other CNN models can also be adopted.
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the convolutional layers produce features with the size of 14× 14× 512. For the ROI

pooling layer, we choose a 7×7 filter following the fast R-CNN architecture [148], which

produces a feature map with a size of 7 × 7 × 512 for each proposal. To transform

the feature map for each proposal into a feature vector, we use the FC layer with a

size of 7× 7× 512× 2048. The 2048 dimensional feature vector associated with each

proposal are then fed into the L2 normalization layer, followed by the dot product

layer, ReLU, our geometric voting layer, and loss layer. The convolutional layers are

initialized by the pretrained weights of VGG16 and the fully connected layers have

random initialization. We train our SCNet by mini-batch SGD, with a learning rate

of 0.001, and a weight decay of 0.0005. During training, each mini-batch arises from

a pair of images associated with a number of proposals. In our implementation, we

generated 500 proposals for each image, which leads to 500× 500 potential matches.

For each mini-batch, we sample matches for training as follows. (1) Positive sam-

pling: For a proposal ri in IA, we are given its ground truth match r′
i in IB. We pick

all the proposals sj in IB with IoU(sj, r′
i) > Tpos to be positive matches for ri. (2)

Negative sampling: Assume we obtain k positive pairs w.r.t ri. We also need to have

k negative pairs w.r.t ri. To achieve this, we first find the proposals st in IB with

IoU(st, r′
i) < Tneg. Assuming p proposals satisfying the IoU constraint, we find the

proposals with top k appearance similarity with ri among those p proposals. In our

experiment, we set Tpos = 0.6, and Tneg = 0.4.

5.5 Experimental Evaluation

In this section we present experimental results and analysis.

5.5.1 Experimental Details

Dataset. We use the PF-PASCAL dataset that consists of 1300 image pairs selected

from PASCAL-Berkeley keypoint annotations6 of 20 object classes. Each pair of im-
6http://www.di.ens.fr/willow/research/proposalflow/
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ages in PF-PASCAL share the same set of non-occluded keypoints. We divide the

dataset into 700 training pairs, 300 validation pairs, and 300 testing pairs. The image

pairs for training/validation/testing are distributed proportionally to the number of

image pairs of each object class. In training, we augment the data into a total of 1400

pairs by horizontal mirroring. We also test our trained models with the PF-WILLOW

dataset [133], Caltech-101 [151] and PASCAL Parts [152] to further validate general-

ization of our models.

Region proposal. Unless stated otherwise, we choose to use the method of Manen et

al. (RP) [134]. The use of RP proposals is motivated by the superior result reported in

[133], which is verified once more by our evaluation. In testing we use 1000 proposals

for each image as in [133], while in training we use 500 proposals for efficiency.

Evaluation metric. We use three metrics to compare the results of SCNet with

other methods. First, we use the probability of correct keypoint (PCK) [153], which

measures the precision of dense flow at sparse keypoints of semantic relevance. It is

calculated on the Euclidean distance d(ϕ(p), p∗) between a warped keypoint ϕ(p) and

ground-truth one p∗7. Second, we use the probability of correct regions (PCR) intro-

duced in [133] as an equivalence of the the PCK for region based correspondence. PCR

measures the precision of a region matching between region r and its correspondent r∗

on the intersection over union (IoU) score, which is defined as 1− IoU(ϕ(r), r∗) [133].

Both metrics are computed against a threshold τ in [0, 1] and we measure PCK@τ and

PCR@τ as the percentage correct below τ . Third, we capture the quality of matching

proposals by the mean IoU of the top k matches (mIoU@k). Note that these metrics

are used to evaluate two different types of correspondence. Indeed, PCK is an eval-

uation metric for dense flow field, whereas PCR and mIoU@k are used to evaluate

region-based correspondences [133].

7To better take into account the different sizes of images, we normalize the distance by dividing
by the diagonal of the warped image, as in [130].
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5.5.2 Proposal Flow Components

We use the PF-PASCAL dataset to evaluate region matching performance. This set-

ting allows our method to be tested against three other methods in [133]: NAM, PHM

and LOM. NAM finds correspondences using handcrafted features only. PHM and

LOM additionally consider global and local geometric consistency, respectively, be-

tween region matchings. We also compare our SCNet-learned feature against whitened

HOG [19], the best performing handcraft feature of [133].

Quantitative comparison. Fig. 5.3(a) compares SCNet methods with the pro-

posal flow methods [133] on the PF-PASCAL dataset. Note that IoU threshold τ

of PCR was compared against the score of 1 − IoU following [133], as described

in Section 5.5.1. Our SCNet models outperformed the other methods that use the

HOG feature. Our geometric models (SCNet-AG, SCNet-AG+) substantially outper-

formed the appearance-only model (SCNet-A), and SCNet-AG+ slightly outperformed

SCNet-AG. This can also be seen from the area under curve (AuC) presented in the

legend (in square bracket). This clearly show the effectiveness of deep learned fea-

tures as well as geometric matching. In this comparison, we fix the VGG16 layer

and only learn the FC layers. In our experiment, we also learned all layers includ-

ing VGG 16 and the FC layers in our model (fully finetuned), but the improvement

over the partially learned model was marginal. Fig. 5.3(b) shows the performance of

NAM, PHM, LOM matching when replacing HOG feature with our learned feature

in SCNet-A. We see that SCNet features greatly improves all the matching methods.

Interestingly, LOM using SCNet feature outperformed our best performing SCNet

model, SCNet-AG+. However, the LOM method is more than 10 times slower than

SCNet-AG+: on average the method took 0.21s for SCNet-A feature extraction and

3.15s for the actual matching process, whereas our SCNet-AG+ only took 0.33s in

total. Most of the time in LOM was spent in computing its geometric consistency

term. We further evaluated three additional baselines using ImageNet-trained VGG

(see Fig. 5.3(c)), namely, VGG, VGG-L2 and VGG-L2-FC. For VGG, we directly use
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Fig. 5.3 (a) Performance of SCNet on PF-PASCAL, compared to Proposal Flow meth-
ods [133]. (b) Performance of SCNet and HOG descriptors on PF-PASCAL, evaluated
using Proposal Flow methods [133]. (c) Comparison to ImageNet-trained baselines.
(d) Comparison of different proposals. PCR and mIoU@k plots are shown at the top
and bottom, respectively. AuC is shown in the legend.
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the features from ImageNet-trained VGG, followed by ROI-pooling to make the fea-

tures for each proposal of the same size (7×7×512). We then flatten the features into

vectors of dimension 175616. For VGG-L2, we l2-normalized the flattened feature of

VGG. For VGG-L2-FC, we performed a random projection from VGG-L2 to a feature

of dimension 2048 (the same dimension with SCNet, 12.25 times smaller than VGG

and VGG-L2) by adding a randomly initialized FC layer on top of VGG-L2. Note that

this is equivalent to SCNet-A without training on the target dataset. The results show

that our SCNet approach significantly outperformed the ImageNet-trained baselines.

Results with different object proposals. SCNet can be combined with any re-

gion proposal methods. In this experiment, we trained and evaluated SCNet-AG+ on

PF-PASCAL with four region proposal methods: randomized prim (RP) [134], selec-

tive search (SS) [154], random uniform sampling (US), and sliding window (SW). US

and SW were extracted using the work of [146], and SW was similar to regular grid

sampling used in other popular methods [116, 122, 123]. Fig. 5.3(d) compares the

matching performance of using the different proposals in terms of PCR and mIoU@k.

RP performed best, and US performed worst with a large margin. This shows that

the region proposal process is an important factor for the matching performance.

Runtime analysis Our current (un-optimized) MATLAB implementation takes on

average 0.23, 0.32, 0.33 seconds for SCNet-A, SCNet-AG and SCNet-AG+, respec-

tively, on a GeForce GTX TITAN GPU. Table 5.1 shows runtime comparisons.

Table 5.1 Runtime comparison. The time is the mean time cost (second) for each
image pair in testing set of PF-PASCAL-RP-1000.

Method Feature Match Total
NAMHOG [133] 2.32 0.32 2.64
PHMHOG [133] 2.32 1.08 3.40
LOMHOG [133] 2.32 3.15 5.47
SCNet-A - - 0.23
SCNet-AG - - 0.32
SCNet-AG+ - - 0.33
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Qualitative comparison. Region matching results for NAM, SCNet-A, and SCNet-

AG+ are shown in Fig. 5.4. In this example, at the IoU threshold 0.5, the numbers of

correct matches are shown for all methods. We can see that SCNet models performed

significantly better than NAM with HOG feature, and SCNet-A was outperformed by

SCNet-AG+ that took the geometric consistency term into account in learning.

bike NAMHOG (37) SCNet-A (104) SCNet-AG+ (107)

wine bottle NAMHOG (88) SCNet-A (177) SCNet-AG+ (180)

Fig. 5.4 Region matching examples. Numbers beside methods stand for numbers of
correct matches.

5.5.3 Flow Field

Given a sparse region matching result and its corresponding scores, we generate dense

semantic flow using a densifying technique presented in [133]. In brief, we select out

a region match with the highest score, and assign dense correspondences to the pixels

within the matched regions by linear interpolation. This process is repeated until

we assign dense correspondences to all pixels in the source image. The results were

evaluated on PF-PASCAL dataset. To evaluate transferability performance of the

models, we also tested them on other datasets such as PF-WILLOW [133], Caltech-

101 [151] and PASCAL Parts [152] datasets, and compared with state-of-the-art results

on these datasets. In these cases direct comparison between learning-based methods

may not be fair in the sense that they are trained on different datasets.

Results on PF-PASCAL. We compared SCNet with Proposal Flow [133] and

UCN [130] on the PF-PASCAL dataset, and summarized the result in Table 5.2.
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The UCN was retrained using the code provided by the authors on the PF-PASCAL

dataset for fair comparison. Using the raw network of [130] trained on a different

subset of PASCAL yielded, as expected, lower performance, with a mean PCK of 36.0

as opposed to the 55.6 obtained for the retrained network. The three variants of SCNet

performed consistently better than UCN as well as all methods in [133], with a PCK of

66.3 or above. They also performed better than other methods in the per-class PCK,

except sheep and train classes, where the pose variations in the images are smaller than

other classes. UCN performed better than SCNet in these two subclasses, since it was

trained in a pixel-wise manner considering only appearance similarity. Among all the

methods, SCNet-AG+ performed the best with a PCK of 72.2. Fig. 5.5 presents two

examples of dense matching for PF-PASCAL. After establishing the dense semantic

correspondences, we warped one image to another image using the flow field. We also

visualized the errors of (sparse) keypoints in the dense semantic flow. The ground-

truth keypoints are presented as circles and the predicted keypoints are presented as

crosses. We observe a better performance of SCNet-AG and SCNet-AG+.
Source Target HOGNAM HOGLOM SCNet-A SCNet-AG+

Source Target HOG NAM HOG LOM SCNet-A SCNet-AG+

Source Target NAMHOG LOMHOG SCNet-A SCNet-AG+

Fig. 5.5 Quantitative comparison of dense correspondence. The source image is warped
to the target image using the estimated semantic flow field. The ground-truth key-
points are shown in circles and the predicted keypoints are shown in crosses. The
vectors depict the matching errors.

Results on PF-WILLOW. For evaluating transferability, we tested (PF-PASCAL

trained) SCNet and UCN on the PF-WILLOW dataset [133] and compared the results
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with recent methods in Table 5.3 where PCK was averaged over all classes. The

postfix ‘w/SF’ and ‘w/PF’ represent that matching is performed by SIFT Flow [123]

and Proposal Flow [133], respectively. On this dataset where the data has a different

distribution, SCNet-AG slightly outperformed the A and AG+ variants (PCK@0.05).

We observe that all SCNet models significantly outperformed UCN, which is trained on

the same dataset with the SCNet models, as well as other methods using hand-crafted

features [119, 123, 155] and learned features [127, 131, 140, 141, 150, 156].

Table 5.3 Fixed-threshold PCK on PF-WILLOW. The threshold τ is set to be 0.01,
0.1, and 0.15, respectively. PCK is averaged over all classes.

Method PCK@0.05 PCK@0.1 PCK@0.15
SIFT Flow [123] 0.247 0.380 0.504
DAISY w/SF [119] 0.324 0.456 0.555
DeepC w/SF [141] 0.212 0.364 0.518
LIFT w/SF [156] 0.224 0.346 0.489
VGG w/SF [150] 0.224 0.388 0.555
FCSS w/SF [131] 0.354 0.532 0.681
FCSS w/PF [131] 0.295 0.584 0.715
LOMHOG [133] 0.284 0.568 0.682
UCN [130] 0.291 0.417 0.513
SCNet-A 0.390 0.725 0.873
SCNet-AG 0.394 0.721 0.871
SCNet-AG+ 0.386 0.704 0.853

Results on Caltech-101. We also evaluated our approach on the Caltech-101

dataset [151]. Following the experimental protocol in [122], we randomly selected

15 pairs of images for each object class, and evaluated matching accuracy with three

metrics: Label transfer accuracy (LT-ACC) [157], the IoU metric, and the localization

error (LOC-ERR) of corresponding pixel positions. Both LT-ACC and IoU measure

the overlap between the wrapped source images and the target images, while IoU only

considers foreground region and LT-ACC considers both foreground and background

regions. LOC-ERR considers pixels inside the annotated object bounding boxes only.

Table 5.4 shows that SCNet achieves comparable results with the state of the art and
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performs better that other existing methods using hand-crafted features. Note that,

the best performer, FCSS [131], was trained on images from the same Caltech-101

dataset, while SCNet models were not.

Table 5.4 Results on Caltech-101. Three metrics, namely, LT-ACC, IoU and LOC-
ERR are evaluated.

Methods LT-ACC IoU LOC-ERR
NAMHOG [133] 0.70 0.44 0.39
PHMHOG [133] 0.75 0.48 0.31
LOMHOG [133] 0.78 0.50 0.26
DeepFlow [116] 0.74 0.40 0.34
SIFT Flow [123] 0.75 0.48 0.32
DSP [122] 0.77 0.47 0.35
FCSS w/SF [131] 0.80 0.50 0.21
FCSS w/PF [131] 0.83 0.52 0.22
SCNet-A 0.78 0.50 0.28
SCNet-AG 0.78 0.50 0.27
SCNet-AG+ 0.79 0.51 0.25

Results on PASCAL Parts. Following [133], we used the dataset provided by

[152] where the images are sampled from the PASCAL part dataset [158]. For this

experiment, we measured the weighted IoU score between transferred segments and

the ground truth, with weights determined by the pixel area of each part. To evaluate

alignment accuracy, we measured the PCK metric (τ = 0.05) using keypoint annota-

tions for the PASCAL classes. Following [133] once again, we used selective search

(SS) to generate proposals for SCNet in this experiment. The results are summarized

in Table 5.5. SCNet models outperformed all other results on the dataset in IoU, and

SCNet-AG+ performed the best among them. FCSS w/PF [131] performed better in

terms of PCK on this dataset. This is reasonable since SCNet was trained on a region-

wise manner and the dense matching is achieved by post-processing, while FCSS was

trained on a pixel-wise manner. Better post-processing method may help improve the

dense matching results of SCNet.
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Table 5.5 Results on PASCAL Parts. The PCK threshold is set as τ = 0.05.

Methods IoU PCK
NAMHOG [133] 0.35 0.13
PHMHOG [133] 0.39 0.17
LOMHOG [133] 0.41 0.17
Congealing [159] 0.38 0.11
RASL [160] 0.39 0.16
CollectionFlow [161] 0.38 0.12
DSP [122] 0.39 0.17
FCSS w/SF [131] 0.44 0.28
FCSS w/PF [131] 0.46 0.29
SCNet-A 0.47 0.17
SCNet-AG 0.47 0.17
SCNet-AG+ 0.48 0.18

These results verify that SCNet models have successfully learned semantic corre-

spondence.

5.6 Conclusions

We have introduced a novel model for learning semantic correspondence, and proposed

the corresponding CNN architecture that uses object proposals as matching primitives

and learns matching in terms of appearance and geometry. The proposed method sub-

stantially outperforms both recent deep learning architectures and previous methods

based on hand-crafted features. The result clearly demonstrates the effectiveness of

learning geometric matching for semantic correspondence.





Chapter 6

Conclusions

6.1 Summary

This thesis has presented theoretical and practical solutions to

• single view transparent object reconstruction by altering incident light paths

through refraction (Chapter 2),

• single view mirror surface reconstruction under an unknown motion of a reference

pattern and an uncalibrated camera (Chapter 3),

• single view diffuse surface reconstruction with an uncalibrated camera and an

unknown mirror sphere (Chapter 4), and

• semantic correspondence estimation across images containing instances of the

same category (Chapter 5).

A brief summary of the algorithms and techniques introduced is given below.

The problem of transparent object reconstruction under a fixed viewpoint was ad-

dressed in Chapter 2. We proposed an approach to dense reconstruction of transparent

objects based on refraction of light. We introduced a simple setup that allows us to

alter the incident light paths before light rays enter the object, and recovered the ob-

ject surface by reconstructing and triangulating such incident light paths. Compared
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with existing methods, our approach does not need to model the complex interactions

of light as it travels through the object, neither does it assume any parametric form

for the object shape nor the exact number of refractions and reflections taken place

along the light paths. It can handle a transparent object with a complex structure,

with an unknown and even inhomogeneous refractive index. Moreover, the proposed

experimental setup is simple and cheap.

A fixed viewpoint method for reconstructing mirror surface under an unknown

motion of a reference pattern and an uncalibrated camera was introduced in Chapter

3. We derived a closed-form solution for estimating the camera projection matrix

from reflection correspondences. The camera projection matrix was then optimized

by minimizing reprojection errors computed based on a cross-ratio based nonlinear

formulation. The mirror surface was then recovered based on the optimized cross-ratio

constraint. The proposed method only needs reflection correspondences as input and

removes the restrictive assumptions of known motions, Cn continuity of the surface,

and calibrated camera that are being used by other existing methods. This greatly

simplifies the challenging problem of mirror surface recovery.

The problem of single view diffuse surface reconstruction using a mirror sphere

was investigated in Chapter 4. Unlike existing methods that require the intrinsic

parameters of the camera and the position and radius of the sphere to be known, we

tackle the challenging scenario that neither the camera is calibrated nor the mirror

sphere is known. Based on eigen decomposition of the matrix representing the conic

image of the sphere and enforcing a repeated eigenvalue constraint, an analytical

solution was derived to recover the focal length of the camera given its principal point.

Based on this analytical solution, we developed two robust algorithms for estimating

both the principal point and focal length of the camera. One algorithm estimates the

camera intrinsics from multiple images of the mirror sphere, and the other needs only

a single image. With the estimated camera intrinsic parameters, the sphere position

and a scaled 3D scene object can be obtained.

A novel approach was introduced in Chapter 5 to establish semantic correspon-
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dence across images containing different instances of the same object or scene cat-

egory. These images feature much larger changes in appearance and spatial layout

than the images of the same scene used in stereo vision (e.g., images for multi-view

3D reconstruction). Most previous approaches to semantic correspondence focus on

combining an effective spatial regularizer with hand-crafted features, or learning a cor-

respondence model for appearance only. We proposed a convolutional neural network

architecture, called SCNet, for learning a geometrically plausible model for semantic

correspondence. SCNet uses region proposals as matching primitives, and explicitly

incorporates geometric consistency in its loss function. State-of-the-art results have

been achieved on several benchmarks.

The accuracy of our single view reconstruction of transparent, mirror and diffuse

surfaces is mainly restricted by the quality of refraction and reflection correspondences.

To obtain the reflection and refraction correspondences, we need the predefined pattern

(i.e., a sweeping line in our experiments) and a number of images of the object. This

is not a highly efficient way in practice, especially when the dimension of the object

is very huge. Semantic correspondence estimation approaches that can handle the

reflection and refraction distortion will drastically reduce the efforts, by taking only

a pair of images as input and producing the correspondences in a fast feed-forward

pass. This can make our single view reconstruction methods much more efficient.

6.2 Future Work

Though the methods in this thesis are novel and very practical, there are certainly

rooms for improvements:

• Complete surface reconstruction

Our transparent and mirror surface reconstruction methods can reconstruct one

side of an object each time. If a complete 3D model of the object is needed, we

have to reconstruct the object part by part. The complete 3D model can then
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be obtained by merging the 3D parts together. However, this procedure is te-

dious and registration difficulty will also hinder their wide application, given the

viewpoint variation, shape variation, and noise in correspondences. Therefore,

our methods can be improved for complete surface reconstruction.

• Dense reflection correspondence for single view diffuse surface reconstruction

with a mirror sphere

The reflections on the spherical mirror suffer severe distortion, which makes it

difficult to establish dense refection correspondences. As a result, our current

method can only recover sparse 3D scene points. Therefore, it will be very useful

to discover solutions to dense reflection correspondence for spherical mirror based

single view 3D reconstruction.

• Local spatial constraints for dense semantic correspondence

SCNet can establish semantic correspondence using proposals as primitives.

Global geometry consistency is incorporated in the model. However, local ge-

ometry information is also proved to be useful in semantic matching [133], es-

pecially when strong clutter occurs in an image. Therefore, it will be beneficial

to consider local geometry in SCNet in the future. Besides, dense semantic cor-

respondences are established by interpolation from region matching results of

SCNet. An end-to-end network is desired to establish dense correspondences

while preserving the geometry consistency.



Appendix A

Pose Estimation with Reflection

Correspondences

M

X0
X1

X2

m

C

P2
P1

P0
S

I

Fig. A.1 A camera centered at C is viewing a mirror surface S, which is reflecting a
reference plane. The reference plane is placed at three different locations, denoted as
P0, P1 and P2, respectively. X0, X1, X2 are reflection correspondences defining the
incident ray.

Here we briefly summarize the approach of [59] that estimates the relative poses

of a reference plane under different locations. The plane is required to be placed at

three difference locations, namely, P0, P1, and P2 (see Fig. A.1). The relative poses

of (P0, P1) and (P0, P2) can be represented by (R1, T1) and (R2, T2) respectively,
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where Ri and Ti, i ∈ {1, 2}, denote the rigid body motion, i.e., rotation (matrix) and

translation (vector). Let X0, X1, and X3 stand for points on the reference plane that

pass through the same incident light path. The 2D coordinates of Xi on the plane

are Xp
i = (xp

i , yp
i , 0)T, where i ∈ {0, 1, 2}. Their 3D coordinates, Xi = (xi, yi, zi)T,

i ∈ {0, 1, 2}, w.r.t P0 can be written as

X0 = Xp
0 =


x0

y0

z0


X1 = R1Xp

1 + T1

= MX̄p
1,

X2 = R2Xp
2 + T2

= NX̄p
2,

where M =
(

R1
1,R1

2,T1
)

, N =
(

R2
1,R2

2,T2
)

, X̄p
i = (xp

i , yp
i , 1)T, and Ri

j denotes the

jth column of Ri, i ∈ {1, 2}, j ∈ {1, 2}. The unknown motion parameters are now

embedded in M and N. Since X0, X1 and X2 are colinear, it follows that

x1 − x0

x2 − x0
= y1 − y0

y2 − y0
= z1 − z0

z2 − z0
,

MT
1 X̄p

1 − x0

NT
1 X̄p

2 − x0
= MT

2 X̄p
1 − y0

NT
2 X̄p

2 − y0
= MT

3 X̄p
1

NT
3 X̄p

2
,

(A.1)

where MT
i and NT

i denote the ith row of M and N respectively. (A.1) gives two

constraints as follows:


(X̄p

2)TAX̄p
1 − x0(X̄p

2)TN3 + x0(X̄p
1)TM3 = 0,

(X̄p
2)TBX̄p

1 − y0(X̄p
2)TN3 + y0(X̄p

1)TM3 = 0,

(A.2)



113

where

A = N3MT
1 −N1MT

3 ,

B = N3MT
2 −N2MT

3 .

Given 3 ×m points X̄p
ij = (xp

ij, yp
ij, 1)T, where 0 ≤ i ≤ 2 and 1 ≤ j ≤ m, we can

formulate the problem as solving a linear system

EW = 0, (A.3)

where

E =


(X̄p

21)T⊗(X̄p
11)T 0T −xp

01(X̄p
21)T −xp

01(X̄p
11)T

0T (X̄p
21)T⊗(X̄p

11)T −yp
01(X̄p

21)T −yp
01(X̄p

11)T

... ... ... ...
(X̄p

2m)T⊗(X̄p
1m)T 0T −xp

0m(X̄p
2m)T −xp

0m(X̄p
1m)T

0T (X̄p
2m)T⊗(X̄p

1m)T −yp
0m(X̄p

2m)T −yp
0m(X̄p

1m)T

 , (A.4)

W = ( AT
1 AT

2 AT
3 BT

1 BT
2 BT

3 NT
3 MT

3 )T , (A.5)

and AT
i and BT

i denote the ith row for A and B respectively. ⊗ denotes kronecker

tensor product. W contains 24 unknowns in total. At least 12 incident rays (i.e.,

3 × 12 reflection correspondences) are needed to solve all the unknowns, since each

incident ray provides two constraints.

The nullity of E is two for non-zero solutions, as the 21st and 24th columns are

identical. Therefore, we first apply SVD to get a solution space spanned by two

solution basis vectors, d1 and d2. W is then parameterized as

W = α(d1 + βd2), (A.6)

where α and β are scale parameters. Now there are 26 unknowns in total. By enforcing

the element-wise equality of (A.5), and (A.6), we have 18 bilinear and 6 linear equations

to solve M, N, α and β. Besides, the orthonomality property of the rotation matrices

encoded in M and N will provide 6 more constraints. A closed-form solution for the
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unknown motion parameters and the two scale parameters can then be obtained by

solving these equations. We use the symbolic Math Toolbox in Matlab to solve them.



Appendix B

Line Projection Matrix and

Camera Projection Matrix

After achieving the line projection matrix, the following task is to convert to its cor-

responding camera (point) projection matrix, so that we can know the intrinsic and

extrinsic parameters of the camera.

First, consider the case of transforming a point projection matrix to it equivalent

line projection matrix. It can be seen in Fig. 3.3 that the plane PT
1 X = 0 is described

by the camera center and the line u = 0 in the image plane. Similarly, PT
2 X = 0 is

described by the camera center and the line v = 0 in the image plane. Finally, the

plane equation PT
3 X = 0 holds for all points with pixel coordinates s = 0. We can

obtain the i-th row of P by the intersection of rows j and k of P, i.e.

PT
i =



ρi1

ρi2

ρi3

ρi4

ρi5

ρi6


= (−1)(i+1)



pj3pk4 − pj4pk3

pj4pk2 − pj2pk4

pj2pk3 − pj3pk2

pj1pk4 − pj4pk1

pj1pk2 − pj2pk1

pj1pk3 − pj3pk1


,

where Pi is the i-th row of P, Pi is the i-th row of P , i ̸= j ̸= k ∈ {1, 2, 3} and j < k.
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Note that PT
i is the dual Plücker vector of (−1)i+1(Pj ∧ Pk), i.e. the intersection of

the j-th with the k-th row of P. The sign here controls the order of intersection, i.e.

(Pj ∧Pk) = −(Pk ∧Pj). Dually, we can obtain the i-th row of P by the intersection

of rows j and k of P , which results in the homogeneous plane

PT
i = (−1)(i+1)

ωj × ωk

νj · ωk



= (−1)(i+1)



ρj5ρk6 − ρj6ρk5

ρj5ρk3 − ρj3ρk5

ρj6ρk3 − ρj3ρk6

ρj4ρk3 + ρj2ρk6 + ρj1ρk5


,

where again i ̸= j ̸= k ∈ {1, 2, 3} with j < k, ωj is the direction vector of PT
j and νj

is the moment vector of PT
j .



Appendix C

Back-propagation for Hough Voting

Given two images associated with p and q proposals respectively. The appearance

similarity matrix F is obtained by considering all possible matches between the two:

F =



f11 f12 f13 . . . f1q

f21 f22 f23 . . . f2q

... ... ... . . . ...

fp1 fp2 fp3 . . . fpq


. (C.1)

The geometric similarity matrix V contains geometric scores assigned to the matches:

V =



v11 v12 v13 . . . v1q

v21 v22 v23 . . . v2q

... ... ... . . . ...

vp1 vp2 vp3 . . . vpq


, (C.2)

vij = vec(F )T gij (C.3)

where vec denotes column-wise vectorization, and the geometry voting vector gij for

a match m is a (p × q) × 1 vector with each element being 0 or 1, such that vij is a

partial sum of the elements in F .

To learn SCNet, we need to back-propagate for the voting. To achieve this, we
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need to first calculate dL/dV , which is a p× q matrix, and L stands for loss.

According to the chain rule, we have dL/dF = dL/dV · dV/dF , and dV/dF is a

(p× q)× (p× q) matrix.

dL/dfij = dL/dV · dV/dfij

= [dL/dv11, dL/dv21, . . . , dL/dvpq]

[dv11/dfij, dv21/dfij, . . . , dvpq/dfij]T

= [dL/dv11, dL/dv21, . . . , dL/dvpq]gij

(C.4)

By vectorizing dL/dV , we simplify the gradient estimation for dL/dF (index fol-

lows Matlab fashion) as

dL/dF = [dL/dv11, dL/dv21, . . . , dL/dvpq]

dv11/df11 dv11/df21 . . . dv11/dfpq

dv21/df11 dv21/df21 . . . dv21/dfpq

... ... . . . ...

dvpq/df11 dvpq/df21 . . . dvpq/dfpq


= [dL/dv11, dL/dv21, . . . , dL/dvpq]

[g11, g21, g31, . . . , gpq]

(C.5)

For efficiency, we first compute the offset matrix H for all candidate matches.

H =



h11 h12 h13 . . . h1p

h21 h22 h23 . . . h2p

... ... ... . . . ...

hp1 hp2 hp3 . . . hpq


, (C.6)

where hij is the offset bin index corresponding to the match m = (ri, rj), that is a

match between ri in image IA and rj in image IB. Note that there are only t unique

numbers in H, which means that there are t different offsets among the p× q pairs of
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possible matches.

For example, H can be in the form of

H =



x1 x2 x3 . . . x4

x2 x1 x2 . . . x4
... ... ... . . . ...

x1 x4 x4 . . . x3


In this example, since h11 = hn1 = h22 = x1, then g vector for offset x1 is

gx1 = vec(



1 0 0 . . . 0

0 1 0 . . . 0
... ... ... . . . ...

1 0 0 . . . 0


)

Since matches m = (ri, rj) with the same offset index have the same gradient

dL/dfij, dL/dfij can be computed only once by (C.4) and shared among them.
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